Fusion and consilience have been important in many aspects of our education and culture. In this flow 2015 revised National Curriculum aimed to cultivate students of abilities of imagining liberally and inventing scientifically and technically. However imagination including imagination in humanities has not been researched in mathematics education part until nowadays, so mathematics education using imagination of raising students with ingenious and harmonizing abilities is hard to discuss concretely. In this paper I studied the opinions of various scholars from ancient times to today, and discussed where imagination reveals itself in mathematics practices. With above results I discussed some possible shape of teaching and learning of mathematics using imagination. And finally we discussed that meanings in the humanities and social aspects.
This study analyzes the mathematical creativity test as an illustrative example with scoring domains of fluency, flexibility and originality in order to make suggestions for obtaining maximum reliability based on a composite score depending on combinations of each scoring domain weights. This is done by performing a multivariate generalizability analysis on the test scores, which were allowed to access publicly, of 30 mathematically gifted elementary school students, and therefore error variances, generalizability coefficients, and effective weights have been calculated. The main results were as follows. First, the optimal weights should adjust to .5, .4, and .1 based on the maximum generalizability coefficient even though the original weights in the mathematical creativity test were equal for each scoring domain with fluency, flexibility and originality. Second, the mathematical creativity test using the three scoring domains of fluency, flexibility, and originality showed higher reliability than using one scoring domain such as fluency. These results are limited to the mathematical creativity test used in this study. However, the methodology applied in this study can help determine the optimal weights depending on each scoring domain when the tests constructed in various researchers or educational fields are composed of multiple scoring domains.
최근 수학 창의성 개발과 관련되어 문제설정에 대한 많은 연구가 진행되고 있으나 문제설정의 기법과 지도방법에 대한 연구는 실제적인 연구는 미비한 실정이다. 이 연구에서는 문제설정의 유형과 수준을 논의함으로서 문제설정 지도에 대한 시사점을 주고자 한다. 문제설정의 유형으로는 다음과 같이 분류될 수 있다. 첫째, 문제를 구성하는 요인들을 다른 것으로 대체하여 만들 수 있는 대치적 수준의 문제설정, 둘째 유추적 사고에 의해 만들 수 있는 유추적 수준의 문제설정, 셋째는 개념이나 또는 해를 구하는 방법이나 절차를 다른 형태로 바꾸는, 즉 문제를 재구성, 재정의 및 재조직하여 문제를 만드는 재구성 수준의 문제설정, 넷째는 출판되는 논문의 주제 선정과 같은 전문가 수준의 문제설정으로 분류하였다.
The future society requires not only knowledge but also various competencies, including creativity, cooperative spirit and integrated thinking. This research develops a program for integrating mathematics and information science to enhance important mathematical competencies such as problem-solving and communication. This program does not require much prior knowledge, can be motivated using everyday language and easy-to-access tools, and is based on creative problem-solving activities with multilateral cooperation. The usefulness and rigor of mathematics are emphasized as the number of participants increases in the activities, and theoretical principles stem from the matrix theory over finite fields. Moreover, the activity highlights a connection with error-correcting codes, an important topic in information science. We expect that the real-world contexts of this program contribute to enhancing mathematical communication competence and providing an opportunity to experience the values of mathematics and that this program to be accessible to teachers since coding is not included.
정육면체 27개를 면끼리 붙여서 7개의 조각을 만들어, 이것을 조합하여 3${\times}$3${\times}$3 정육면체가 되도록 하는 퍼즐로 소마큐브(Soma Cube)가 많이 알려져 있다. 이런 입체퍼즐은 공간지각력과 문제해결능력을신장시켜서 창의력을 키우는 데 매우 효과적이므로, 교육적 소재로서 수업에 활용하면 좋다. 이 웍샵에서는 소마큐브와 같은 원리를 갖지만 조각의 모양이 전혀 다른 조이큐브(Joy Cube)와 펀큐브(Fun Cube, Diabolic Cube)를 직접 만들어서, 이를 수업에 활용하는 방법을 소개하려고 한다. 조이큐브는 초등학교 고학년, 펀큐브는 전학년에서 활용이 가능하다.
The purpose of this research was to analyze the convergent approaches for creativity in elementary mathematics textbooks in Korean and the united States. Convergent approaches have emphasized since NCTM(2000) consistently includes 'connections' as an important factor in mathematics curriculum and KOFAC(Korea Foundation for the Advancement of Science & Creativity) initiated the STEAM(Science, Technology, Engineering, Arts, and Mathematics) in mathematics and science education. For this research, two elementary mathematics textbooks were analyzed focused on their contexts and contents: Korean National Elementary Mathematics Textbooks and Navigations in Numbers, Data, and Space. In both textbooks, it was not easy to find so called the convergent approach in a real sense, but they use some contexts for connections between mathematical concepts and real world phenomena. For the enhancement of convergent approaches in mathematics education, we need to have a broader sense in the convergent approaches and develop various meaningful materials.
수학은 합리적이고 논리적으로 사고하는 양식(style)의 학문으로서 과학기술이 발전함에 따라 점진적으로 변화하고 확장되는 개념의 집합체이다. 불확실한 미래사회에 대비하기 위하여 문제해결, 추론 및 의사결정의 기법은 학교수학에서 더욱 강조되어야 한다. 이러한 사회환경의 변화에 적극적으로 대처하기 위하여 7차 교육과정의 기본 방향을 ‘자율적 ${\cdot}$ 창의적인한국인 육성’으로 설정한 교육부는 국민 공통 기본 교육과정의 수학을 ‘단계형 수준별 교육과정’으로 규정하고, 1학년에서 10학년까지를 20개의 소단계(1-가에서 10-나)로 세분하고 있다. 그러나 단계형 수준별 교육과정을 지나치게 의식하게 되면, 학생들의 개인차나 협동학습, 학습평가 등의 교수 ${\cdot}$ 학습의 여러 측면에서 자칫 혼란이 우려된다. 이에 본 연구에서는 수준별 교육과정을 운영하고 있는 뉴질랜드의 교육과정을 살펴보고, 학생들의 자율성과 창의성을 신장할 수 있는 방안으로서 교과서의 재구성 방안과 이에 따른 교사의 역할을 살펴보고자 한다.
이 연구에서는 창의적인 문제해결능력을 검사하는 도구로 널리 알려진 개방형 문항 5 문제를 수정 또는 번역하여 중학교 2학년 학생들에게 적용하고 그 결과를 분석하였다. 검사도구에 대한 양호도 분석 결과는 다음과 같다. 첫째, 문항 내적 일관성 신뢰도(Cronbach ${\alpha}$)의 계수는 0.8이다. 둘째, 문항반응이론에 근거한 문항의 적합도 지수는 모두 1.2미만으로서 분석모형에 적합한 문항이라고 볼 수 있다. 또한, 문항간의 난이도의 차이는 로짓트 점수가 0.6을 넘지 않은 범위에서 골고루 분포되어 있다. 셋째, 문항 신뢰도 지수가 모두 0.80보다 높은 것으로 나타나 사용된 문항들은 서로 잘 분리되어 창의적 문제해결력을 추정하고 변별하는데 무리가 없다. 학생들의 반응에 대한 분석 결과는 다음과 같다. 문항1에서 곡선을 이용한 반응은 영재학생들에서만 발견할 수 있었다. 문항2에 대한 각 반응의 독창성 점수는 모두 0이다 이것은 문항2가 널리 알려진 문제에 기인한 것으로 해석된다. 문항3은 영재학생들이 더 많은 반응을 보인 것으로 모든 반응이 독창성 점수를 부여받았다. 문항4에 대하여 일반학생들은 거의 반응을 하지 못하였다. 문항5는 대부분의 학생이 반응을 하였으며 반응의 종류도 가장 다양하였다.
본 연구에서는, 6년 전에 개발된 수학 창의적 문제 해결력 검사(MCPSAT; 한국교육개발원(김흥원 외, 1997))에 대한 현시점의 적합성여부를 알아보기 위하여 이 검사의 중학교 1-3학년용 A형 1부 검사와 고등학교 1-2학년용 A형 1부 검사를 해당 학년 학생들에게 적용하여 분석하였다. 검사도구의 양호도는 비교적 좋은 것으로 나타났다. 즉, 중학교와 고등학교 모두 문항 내적 일관성 신뢰도(Cronbach ${\alpha}$)의 계수가 약간 떨어져 있지만 비교적 양호한 것으로 볼 수 있으며 변별도는 점이연 상관 계수가 0에 가까운 문항이 없는 것으로 나타났다. 따라서 모든 문항이 학생들의 수학 창의적 문제 해결력을 변별해 줄 수 있을 것으로 생각한다. 내적 타당도는 중학교의 경우 관대하게 본다면 수용할 만 하고, 고등학교의 경우 아직은 우려할 수준은 아니다. 즉, 중학교 문항 1과 문항 4는 적합도 지수 1.2를 상회하였으나 Infit과 Outfit 모두 1.5를 넘는 문항은 없었다. 고등학교의 문항 4는 문항의 적합도 지수 1.2를 상회하는 것으로 나타나고 있으나 Infit과 Outfit 모두 1.2를 상회하지 않았다. 난이도 측면에서 볼 때, 이 검사의 계속 사용은 염려스러운 면이 있다. 즉, 중학교에서는 6년 전 보다 쉬운 것으로 나타나고 있는 바 이것은 현재의 학생들이 이러한 유형의 문항을 많이 접하였을 것으로 추측할 수 있다. 고등학교에서는 6년 전 보다 조금 더 어려워 졌다고 볼 수 있다. 위의 사항을 종합할 때, 수학 창의적 문제 해결력 검사에서 중학생용은 현재의 학생들의 수준을 고려하여 재 표준화하는 것이 바람직하고, 고등학생용은 개발 당시의 신뢰도, 난이도, 변별도 등에서 유사하므로 당분간 계속 사용하여도 될 것이다.
수학 학습의 목표를 수학적 사고력의 신장이라는 측면에서 보았을 때 이를 위하여 문제에 대한 다양한 해법을 찾는 활동은 중요하다. 문제에 대한 다양한 접근은 문제해결의 전략을 학습시키고 사고의 유연성을 길러줄 수 있는 방법이 된다. 문제에 대한 다양한 해법을 찾는 과정에서 이미 알고 있는 지식이 어떻게 응용되는지를 알게 된다. 특히 기하 문제에 대한 다양한 접근은 문제해결의 전략을 학습시킬 수 있는 좋은 예가 된다. 본고에서는 문제해결을 통한 수학적 일반성을 발견하기 위한 방법으로서 문제에 대한 다양한 해법을 연역과 귀납에 의하여 일반화하는 과정을 탐색하고자 한다. 특히 수학 문제에 대한 다양한 해법을 찾는 것은 문제해결 전략으로서 뿐만 아니라 창의적 사고의 신장 측면에서 시사점을 던져준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.