• Title/Summary/Keyword: 수학신학

Search Result 8, Processing Time 0.021 seconds

Euler's Mathematical Theology (오일러의 수학신학)

  • Hyun, Woo-Sik
    • Journal for History of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.11-21
    • /
    • 2012
  • The interdisciplinary study explores the Euler's theology through his mathematical landmarks. From the mathematico-theological perspective, we first address Euler's theological backgrounds, and then show the implications of Euler's identity as his mathematical Christology.

Cantor's Theology and Mathematics of the Infinite (칸토르의 수학 속의 신학)

  • Hyun, Woo-Sik
    • Journal for History of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.13-21
    • /
    • 2011
  • This mathematico-theological study addresses the Cantor's mathematics and theology of the infinite. From the scientific perspective, Cantor's landmark works opened the definition and logic of infinity in concreto, in abstracto, and in Deo. According to Cantor, the absolute infinite ${\Omega}$ could imply God's property beyond the actual infinite in physical and mathematical worlds.

A Study on the Algorithms of Highways Analysis Using Graph Theory (그래프 이론을 이용한 고속도로 분석 알고리즘에 관한 연구)

  • Hail Oh;Suho Son;Sookyeong Jang;Kisoeb Park;moonseong Kim;Gwangyeon Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.293-296
    • /
    • 2023
  • 본 논문에서는 고속도로의 교통망의 연결성을 분석하고 예측하기 위하여 그래프 이론을 이용하여 접근성 지표의 알고리즘을 제안한다. 먼저 2025년 고속도로 교통망을 그래프로 나타낸 운송네트워크를 구한다. 그리고 그래프 이론의 연결수, 비교거리, 접근지표, 연결도, 산포지수, 지름 등의 개념을 이용하여 2025년 고속도로 교통망의 연결성을 분석하고 예측하기 위하여 주어진 운송네트워크로부터 다양한 접근성 지표를 쉽게 얻을 수 있는 알고리즘을 제시한다. 이를 통하여 고속도로의 운송네트워크에서 교통의 중심이 되는 도시를 찾을 수 있다.

  • PDF

세계과학기술사 (서양편) -새 우주편-

  • 송상용
    • 발명특허
    • /
    • v.5 no.11 s.57
    • /
    • pp.18-20
    • /
    • 1980
  • 코페르니쿠스의 보수적요소를 거부하고 근본적으로 태양중심체계를 바꾸어 놓은 것은 케플러 (Gohannes Kepler, 1571-1630)였다. 그는 튀빙엔에서 신학을 공부했으나 천문학으로 관심을 돌렸다. 그에게 천문학을 가르친 매스틀린(Mastlin)은 지구중심우주체계를 강의했지만 사석에서는 코페르니쿠스가 맞는다고 했다. 그래서 케플러는 이미 학생시절에 열렬한 코페르니쿠스주의자가 되어 있었다. 케플러는 루터파 신교도로서 우주에서 삼위일체를 보았다. 즉 태양은 성교, 별들은 성자, 중간의 공간은 성신이었다. 그는 우주가 살아 있으며 행성들과 지구는 영혼을 가지고 있다고 믿었다. 이것은 아마도 당시에 크게 유행한 루터파 신비주의의 영향인 듯하다. 케플러는 철저한 피타고라스${\cdot}$플라톤주의자였다. 그는 우주가 수학적 조화를 이루고 있고, 신은 위대한 기하학자이며, 인간은 신의 이미지를 따서 만들어졌다고 보았다. 따라서 인간은 수학을 통해 우주를 이해할 수 있다는 생각이었다.

  • PDF

Mathematical Infinite Concepts in Arts (미술에 표현된 수학의 무한사상)

  • Kye, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.53-68
    • /
    • 2009
  • From ancient Greek times, the infinite concepts had debated, and then they had been influenced by Hebrew's tradition Kabbalab. Next, those infinite thoughts had been developed by Roman Catholic theologists in the medieval ages. After Renaissance movement, the mathematical infinite thoughts had been described by the vanishing point in Renaissance paintings. In the end of 1800s, the infinite thoughts had been concreted by Cantor such as Set Theory. At that time, the set theoretical trend had been appeared by pointillism of Seurat and Signac. After 20 century, mathematician $M\ddot{o}bius$ invented <$M\ddot{o}bius$ band> which dimension was more 3-dimensional space. While mathematicians were pursuing about infinite dimensional space, artists invented new paradigm, surrealism. That was not real world's images. So, it is called by surrealism. In contemporary arts, a lot of artists has made their works by mathematical material such as Mo?bius band, non-Euclidean space, hypercube, and so on.

  • PDF

역사속 과학인물-중국에 서양과학 소개한 이 선교사 마테오리치

  • Park, Seong-Rae
    • The Science & Technology
    • /
    • v.31 no.3 s.346
    • /
    • pp.26-28
    • /
    • 1998
  • 1518년 이탈리아 출신의 선교사로 중국에 들어와 서양과학기술을 처음소개한 마테오 리치(1552-1610년)는 직업적 과학자는 아니지만. 서양의 기하학을 동양에 보급하는 업적을 남겼다. 로마대학에서 과학과 신학을 전공한 리치는 중국에서 선교활동을 하는 동안 임금에게 자명종을 바쳐 환심을 끌었으며 동문산지등 많은 수학책을 남겼다. 서양의 천문학도 소개했고 특히 세계지도를 만들어 보급했는데그가 그린 지도인 양의현람도는 현재 숭전대 박물관에 보관되어 있어 더욱 관심을 모으고 있다.

  • PDF

Status and Development of Physics-Informed Neural Networks in Agriculture (Physics-Informed Neural Networks 연구 동향 및 농업 분야 발전 방향)

  • S.Y. Lee;H.J. Shin;D.H. Park;W.K. Choi;S.K. Jo
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.42-53
    • /
    • 2024
  • Mathematical modeling is the process of representing physical phenomena using equations, and it often describes various scientific phenomena through differential equations. Numerical analysis, which is capable of approximating solutions to partial differential equations representing physical phenomena, is widely utilized. However, in high-dimensional or nonlinear systems, computational costs can substantially increase, leading to potential numerical instability or convergence issues. Recently, Physics-Informed Neural Networks (PINNs) have emerged as an alternative approach. A PINN leverages physical laws even with limited data to provide highly reliable predictive performance and can address the convergence issues and high computational costs associated with numerical analysis. This paper analyzes the weak signals, research trends, patent trends, and case studies of PINNs. On the basis of this analysis, it proposes directions for the development of PINN techniques in the agricultural field. In particular, the application of PINNs in agriculture is expected to be more effective than in other industries because of their ability to reflect real-time changes in biological processes. While the technology readiness level of PINNs remains low, the potential for model training with minimal data and real-time prediction capabilities suggests that PINNs could replace traditional numerical analysis models. It is anticipated that the research and industrial applications of PINN will develop at an increasing pace while focusing on addressing the complexity of mathematical models in agriculture, mathematical modeling and the application of various biological processes; securing key patents related to PINNs; and standardizing PINN technology in the field of agriculture.

Application of Predictive Food Microbiology Model in HACCP System of Milk (우유의 HACCP 시스템에서 Predictive Food Microbiology Model 이용)

  • 박경진;김창남;노우섭;홍종해;천석조
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • Predictive food microbiology(PFM) is an emerging area of food microbiology since the later 1980’s. It does apply mathematical models to predict the responses of microorganism to specified environmental variables. Although, at present, PFM models do not completely developed, models can provide very useful information for microbiological responses in HACCP(Hazard Analysis Critical Control Point) system and Risk Assessment. This study illustrates the possible use of PFM models(PMP: Pathogen Modeling Program win5.1) with milk in several elements in the HACCP system, such as conduction of hazard analysis and determination of CCP(Critical Control Points) and CL(Critical Limits). The factors likely to affect the growth of the pathogens in milk involved storage fixed factors were pH 6.7, Aw 0.993 and NaCl 1.3%. PMPwin5.1 calculated generation time, lag phase duration, time to level of infective dose for pathogens across a range of storage (Critical Control Points) and CL(Critical Limits). The factors likely to affect the growth of the pathogens in milk involved storage temperature, pH, Aw and NaCl content. The factors likely to affect the growth of the pathogens in milk involved storage temperature, pH, Aw and NaCl content. The variable factor was storage temperature at the range of 4~15$^{\circ}C$ and the fixed factors were pH 6.7, Aw 0.993 and NaC 1.3%. PMPwin5.1 calculated generation time, lag phase duration, time to level of infective dose for pathogens across a range of storage temperature.

  • PDF