• Title/Summary/Keyword: 수학과 교과역량

Search Result 92, Processing Time 0.017 seconds

The Application of Convergence lesson about Private Finance with Life Science subject in Mongolian University (몽골대학에서 개인 금융과 올바른 삶 교과간 융합수업 적용)

  • Natsagdorj, Bayarmaa;Lee, Kuensoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.872-877
    • /
    • 2018
  • STEAM is an acronym for Science, Technology, Engineering, Arts, and Mathematics. It is considered important to equip students with a creative thinking ability and the core competences required in future society, helping them devise new ideas emerging from branches of study. This study is about the convergence of instructional design in private finance for the life sciences, which aims to foster talent through problem-based learning (PBL). Skills like collaboration, creativity, critical thinking, and problem solving are part of any STEAM PBL, and are needed for students to be effective. STEAM projects give students a chance to problem-solve in unique ways, because they are forced to use a variety of methods to solve problems that pop up during these types of activities. The results of this study are as follows. First is the structured process of convergence lessons. Second is the convergence lesson process. Third is the development of problems in the introduction of private finance and the life sciences for a convergence lesson at Dornod University. Learning motivation shows the following results: understanding of learning content (66.6%), effectiveness (63.3%), self-directed learning (59.9%), motivation (63.2%), and confidence (63.3%). To make an effective model, studies applying this instructional design are to be implemented.

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.