• Title/Summary/Keyword: 수평형 열교환기

Search Result 32, Processing Time 0.017 seconds

Cooling Performance of Horizontal Type Geothermal Heat Pump System for Protected Horticulture (시설원예를 위한 수평형 지열 히트펌프의 냉방성능 해석)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kang, Geum-Chun;Kim, Young-Joong;Paek, Yee
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • It has become a big matter of concerns that the skill and measures against reduction of energy and cost for heating a protected horticultural greenhouse were prepared. But in these days necessity of cooling a protected horticultural greenhouse is on the rise from partial high value added farm products. In this study, therefore, a horizontal type geothermal heat pump system with 10 RT scale to heat and cool a protected horticultural greenhouse and be considered to be cheaper than a vertical type geothermal heat pump system was installed in greenhouse with area of $240\;m^2$. And cooling performances of this system were analysed. As condenser outlet temperature of heat transfer medium fluid rose from $40^{\circ}C$ to $58^{\circ}C$, power consumption of the heat pump was an upturn from 11.5 kW to 15 kW and high pressure rose from 1,617 kPa to 2,450 kPa. Cooling COP had the trend that the higher the ground temperature at 1.75 m went, the lower the COP went. The COP was 2.7 at ground temperature at 1.75 m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$ and the heat extraction rate from the greenhouse were 28.8 kW, 26.5 kW respectively at the same ground temperature range. 8 hours after the heat pump was operated, the temperature of ground at 60 cm and 150 cm depth buried a geothermal heat exchanger rose $14.3^{\circ}C$, $15.3^{\circ}C$ respectively, but the temperature of ground at the same depth not buried rose $2.4^{\circ}C$, $4.3^{\circ}C$ respectively. The temperature of heat transfer medium fluid fell $7.5^{\circ}C$ after the fluid passed through geothermal heat exchanger and the fluid rejected average 46 kW to the 1.5 m depth ground. It analyzed the geothermal heat exchanger rejected average 36.8 W/m of the geothermal heat exchanger. Fan coil units in the greenhouse extracted average 28.2 kW from the greenhouse air and the temperature of heat transfer medium fluid rose $4.2^{\circ}C$after the fluid passing through fan coil units. It was analyzed the accumulation energy of thermal storage thank was 321 MJ in 3 hours and the rejection energy of the tank was 313 MJ in 4 hours.

Stress and Fatigue Evaluation of Distributor for Heat Recovery Steam Generator in Combined Cycle Power Plant (복합발전플랜트 배열회수보일러 분배기의 응력 및 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.44-54
    • /
    • 2018
  • Stress and fatigue of the distributor, an equipment of the high-pressure evaporator for the HRSG, were evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the results of the piping system analysis model, reaction forces of the tubes connected to the distributor were derived and used as the nozzle load applied to the detailed analysis model of the distributor afterward. Next, the detailed model to analyze the distributor was constructed, the distributor being statically analyzed for the design condition with the steam pressure and the nozzle load. As a result, the maximum stress occurred at the bore of the horizontal nozzle, and the primary membrane stress at the shell and nozzle was found to be less than the allowable. Next, for the transient operating conditions given for the distributor, thermal analysis was performed and the structural analysis was carried out with the steam pressure, nozzle load, and thermal load. Under the transient conditions, the maximum stress occurred at the vertical downcomer nozzle, and of which fatigue life was evaluated. As a result, the cumulative usage factor was less than the allowable and hence the distributor was found to be safe from fatigue failure.