• Title/Summary/Keyword: 수평축 조류발전터빈

Search Result 27, Processing Time 0.023 seconds

Performance Analysis of High Efficiency Horizontal Axis Tidal Current Turbine (고효율 수평축 조류발전 터빈의 성능해석)

  • Kim, Ki-Pyoung;Kim, Jung-Min;Kim, Beom-Seok;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.632-635
    • /
    • 2009
  • Nowadays renewable energy has undergone major development, however most renewable energy resources still have demerit which is under the influence of environmental factors that can not be set up the power plants or can not be generated the rated power. To wander from the point of environmental instability, the present paper looks at the tidal current energy which can supply regular electric power. It has an important merit which is more predictable than others, however the place which can be set up is limited and the turbine system must be optimized. The development of the optimized rotor blades design is urgent to obtain regular electric power using the tidal current energy. Therefore, the paper expands on this idea and presents a conceptual design of 100kW horizontal axis rotor blade for the tidal current turbine using blade element momentum (BEM) analysis. The compatibility of horizontal axis tidal turbine (HATT) is verified using a commercial computational fluid dynamics (CFD) code, ANSYS-CFX. This paper presents results of the numerical analysis, such as pressure, streak line and the performance curves with torque data for the inflow of the horizontal axis tidal current turbine (HATT).

  • PDF

Comparative Study on Horizontal Axis Turbine(HAT) Impeller Design (HAT 임펠러 설계 비교 연구)

  • Kim, Moon-Chan;Shin, Byung-Chul;Lee, Ju-Hyun;Rhee, Shin-Hyung;Hyun, Beom-Soo;Nam, Jong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • The present study deals with the investigation about the improvement of the design of tidal stream turbine blade (HAT) in comparison with wind turbine blade because the parameters of tidal stream turbine blade has been mostly derived from wind turbines. As such, there is plenty of room for improvement of the HAT impeller blade design. Comparisons have been done between the newly designed and existing impeller computationally. Similar comparisons will also be made for the experimental results in the near future.

HAT Tidal Current Rotor Performance as per various Design Parameter (조류발전 로터 설계변수에 따른 성능 검토)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. This paper introduces the experiment of rotor performance and also the effect of design parameter on the performance of HAT rotor by CFD.

  • PDF

Performance Analysis on 2-Bladed Tidal Current Power Turbine (해양 조류발전용 2블레이드 터빈의 성능해석)

  • Lee, Kanghee;Yim, Jinyoung;Rho, Yuho;Song, Seungho;Jo, Chulhee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.236.1-236.1
    • /
    • 2010
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. In this paper, a design guideline of current generating HAT rotor and acceptable field rotor in offshore environment is proposed. To design HAT rotor model, wind mill rotor design principles and turbine theories were applied based on a field HAT rotor experimental data. To verify the compatibility of the rotor design method and to analyze the properties of design factors, 3D CFD model was designed and analysed by ANSYS CFX. The analysis results and findings are summarized in the paper.

  • PDF

A Numerical Study on Tip Rake HAT Impeller Performance for Tidal Stream Power (조류발전용 팁 레이크 HAT 임펠러 성능 수치해석 연구)

  • Shin, Byung-Chul;Kim, Moon-Chan;Do, In-Rok;Rhee, Shin-Hyung;Hyun, Beom-Soo;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • The present study deals with the investigation about the improvement of performance of tidal stream turbine blade (HAT) with tip rake. HAT impeller has sometimes experienced noise and vibration by Tip vortex which causes even erosion and severe efficiency loss to the blade, The newly proposed tip rake impeller can make the tip vortex week compared with a normal impeller by preventing the three dimensional effect at tip region. In order to find out the optimum rake impeller, three cases have been designed and the performance of the designed rake impellers has been validated by the commercial CFD code(Fluent). The efficiency of optimized rake impeller was up to 4.6% higher than the conventional impeller. The more parametric study for high efficiency and good cavitation performance is expected to be conducted in a near future.

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.

A Study of Performance estimate and Flow Analysis of the 100kW Counter-Rotating Marine Current Turbine by CFD

  • Kim, Mun-Oh;Kim, Chang-Goo;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.166.1-166.1
    • /
    • 2011
  • The rotor design is fundamental to the performance and dynamic response of the Counter-rotating marine tidal current turbine. The wind industry has seen significant advancement single rotor blade technology, offering considerable knowledge and making it easy to transfer to tidal stream energy converters. In this paper, 3D flow and performance an alysis on a 100 kW counter-rotating marine current turbine blade was carried out by using the 3-D Navier-Stokes commercial solver(ANSYS CFX-11.0) to provide more efficient design techniques to design engineers. The front and rear rotor diameter is 8m and the rotating speed is 24.72rpm. Hexahedral meshing was generated by ICEM-CFD to achieve better quality of results. The rated power and its approaching stream velocity for design are 100 kW and 2 m/s respectively. The pressure distribution on the blade's suction side tells us that the pressure becomes low at the leading edge of the airfoil as it moves from the hub to the tip.

  • PDF