• Title/Summary/Keyword: 수평곡률

Search Result 54, Processing Time 0.026 seconds

Finite element analysis of transient growth of GaAs by horizontal Bridgman method (수평브릿지만법에 의한 갈륨비소 과도기 성장의 유한요소 해석)

  • 김도현;민병수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.19-31
    • /
    • 1996
  • To invetigate the impurity distribution in GaAs crystal grown by horizontal Bridgman method, we constructd the mathematical model describing heat transfer, mass transfer and fluid flow n transient growth of GaAs. Galerkin finite element method and implicit time integration were used to solve the equations and simulate the transient growth. The concentration distribution is similar to the case of diffusion controlled growth when Gr - 0. With the increase of Gr the concentration profile is distroted and the minimum solute concentration appears near the interface. As solidification prosceeds, interface deflection increases steadily and transverse segregation increases until mixing by flow becomes steady. The axial segregation increases with solidification. But, with high intensity of flow axial segregation becomes steady after short transient. At small and large Gr the result showed a good agreememt with the prediction Smith and Scheil.

  • PDF

Crystalline lens'curvature change model by Accommdation (조절력에 따른 Crystalline Lens의 곡률 변화 모델)

  • Park, Kwang-Ho;Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.181-187
    • /
    • 2002
  • Curvature of Crystalline lens changes by Accommdation's change. When Accommdation gives force vertically to Crystalline lens that is elastic body, length increases for vertex direction. Density distribution and form of Crystalline lens that receive force lean to posterior surface, horizontal force of anterior surface direction is bigger more than horizontal force of posterior surface direction. But, if Accommdation begins to grow more than threshold value, expansity reaches in limit on anterior surface. This time, horizontal force of posterior surface direction is great mored more than horizontal force of anterior surface direction, thickness of posterior surface direction increases because is more than anterior surface direction. Anterior and posterior relationship thickness change difference accomplish the 2-nd funtional line(${\Delta}=B_1D+B_2D^2$) about Accommdation. Thickness (${\Delta}t_a$, ${\Delta}t_p$) difference change curved line of anterior pole-border and border-posterior pole by Accommdation is expressed as following. $${\Delta}t_a=t_a-t_{ao}=t_{max}+t_0{\exp}(-A/B)-t_{ao}$$ $${\Delta}t_p=t_p-t_{po}=t_{min}+t_0{\exp}(A/B)-t_{po}$$ The Parameter value that save in human's Crystalline lens obtain $t_{min}=1.1.06$, $t_0=-0.33$, B=9.32 in anterior, and $t_{max}=1.97$, $t_0=0.10$, B=7.96 etc. in posterior. Vertex curvature radius' change is as following Crystalline lens' anterior and posterior by Accommation $$R=R_0+R_1{\exp}(D/k)$$ The Parameter value that save in human's Crystalline lens obtain $R_{min}=5.55$, $R_1=6.87$, k=4.65 in anterior, and $R_{max}=-68.6$, $R_1=76.7$, k=308.5 in posterior, respectively.

  • PDF

Improved design of a directional coupler by a novel concept (방향성 결합기의 성능 및 허용오차 개선을 위한 신제안)

  • 최철현;박순룡;오범환
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.405-410
    • /
    • 2000
  • We propose a novel design concept to improve extinction ratio by minimizing $Cv_e-Cv_o$ . Improvements of loss and fabrication error limit are also obtained by this hybrid design of the lateral shift and curved waveguide to control transfer coefficients, $Cv_e and Cv_o$ . The concept of lateral shift merges two transfer coefficients, and additional curved waveguide controls mode profile asymmetrically to help this minimizing effect of $Cv_e-Cv_o$ with no serious decrease in transfer efficiency. For a given InP based waveguide structure, the mode propagation analysis with an effective index approximation provided a calculational improvement of extinction ratio to -39 dB and fabrication error limit to $57.19\mu\textrm{m}$, with a structure design of $300\mu\textrm{m}$ waveguide curvature and $0.1\mu\textrm{m}$lateral shift. shift.

  • PDF

The Crack Analysis and Redesign of Horizontal Fin of F-5E/F's External Fuel Tank (F-5E/F 외부 연료탱크 수평 핀 균열 분석 및 재설계)

  • Kang, Chi-Hang;Yoon, Young-In;Jung, Dae-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • In this work the replacement material for magnesium alloy was investigated and an optimized design was suggested for the horizontal fin of a fighter's external fuel tank. For the replacement of magnesium alloy, Aluminum alloy, AL 2034-T351, was selected by considering material properties and its procurement. The strength and fracture toughness properties of AL 2034-T351 are stronger than those of magnesium alloy, but the specific weight of AL 2034-T351 is heavier than that of magnesium alloy by 65%. To meet the allowable limit of C.G. shift in the tank, the design of horizontal fin was optimized by reducing the original shape by 20% and resizing the maximum thickness to 7 mm. From the results of the static and dynamic stress analysis for improving the safety factor of the joint section and the joint hole, the radius of curvature in the aft joint section of the new fin was designed as 8.5mm.

Free Vibrations of Horizontally Noncircular Curved Beams resting on Pasternak Foundations (Pasternak 지반위에 놓인 변화곡률 수평 곡선보의 자유진동)

  • Lee, Byoung-Koo;Park, Kwang-Kyou;Oh, Sang-Jin;Jin, Tae-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.706-711
    • /
    • 2000
  • This paper deals with the free vibrations of horizontally curved beams on an elastic foundation. Taking into account the effects of rotatory inertia and shear deformation, the differential equations governing free vibrations of noncircular curved beams resting on Pasternak-type foundations are derived and solved numerically. The lowest three natural frequencies for parabolic curved beams with hinged-hinged and clamped-clamped end restraints are calculated. Numerical results are presented to show the effects on the natural frequencies of the non-dimensional system parameters: the horizontal rise to span length ratio, the Winkler foundation parameter, the shear foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Validating a New Approach to Quantify Posterior Corneal Curvature in Vivo (각막 후면 지형 측정을 위한 새로운 방법의 신뢰도 분석 및 평가)

  • Yoon, Jeong Ho;Avudainayagam, Kodikullam;Avudainayagam, Chitralekha;Swarbrick, Helen A.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.223-232
    • /
    • 2012
  • Purpose: Validating a new research method to determine posterior corneal curvature and asphericity(Q) in vivo, based on measurements of anterior corneal topography and corneal thickness. Methods: Anterior corneal topographic data, derived from the Medmont E300 corneal topographer, and total corneal thickness data measured along the horizontal corneal meridian using the Holden-Payor optical pachometer, were used to calculate the anterior and posterior corneal apical radii of curvature and Q. To calculate accurate total corneal thickness the local radius of anterior corneal curvature, and an exact solution for the relationship between real and apparent thickness were taken into consideration. This method differs from previous approach. An elliptical curve for anterior and posterior cornea were calculated by using best fit algorism of the anterior corneal topographic data and derived coordinates of the posterior cornea respectively. For validation of the calculations of the posterior corneal topography, ten polymethyl methacrylate (PMMA) lenses and right eyes of five adult subjects were examined. Results: The mean absolute accuracy (${\pm}$standard deviation(SD)) of calculated posterior apical radius and Q of ten PMMA lenses was $0.053{\pm}0.044mm$ (95% confidence interval (CI) -0.033 to 0.139), and $0.10{\pm}0.10$ (95% CI -0.10 to 0.31) respectively. The mean absolute repeatability coefficient (${\pm}SD$) of the calculated posterior apical radius and Q of five human eyes was $0.07{\pm}0.06mm$ (95% CI -0.05 to 0.19) and $0.09{\pm}0.07$ (95% CI -0.05 to 0.23), respectively. Conclusions: The result shows that acceptable accuracy in calculations of posterior apical radius and Q was achieved. This new method shows promise for application to the living human cornea.

Evaluation of Characteristics on Negative Reactions of Simply Supported Curved Box Girder Bridges with Elastomeric Bearings (탄성받침을 가지는 단경간 곡선 강박스거더 교량의 부반력 특성평가)

  • Kim, Kyungsik;Lee, Heejeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Horizontally curved bridges are subjected to torsional loads by their vertical dead loads only as well as eccentric loads, which cause negative reactions at supports. In this paper, effects of bridge curvature on vertical reactions at supports are investigated for 48.8 m length simple span steel box girder bridges with elastomeric bearings by varying curvature angle from 0.49 to 1.35 rad. In order to expect magnitude and direction of reactions including possibility of negative reactions, reaction evaluation equations have been analytically developed by separating a superstructure of curved bridge into independent components. Concrete slabs and bottom flanges in steel box section are assumed geometrical annular sectors in area dimension, and top flanges and webs that have very narrow projected areas are assumed geometrical arcs in line dimension. Proposed equations have relatively simple forms and prediction values are on very good agreement with those from finite element analyses by difference of 1% order.

Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall (I) - Steady Flow Characteristics - (곡면상에 설치된 열린 공동을 지나는 천음속/초음속 유동에 관한 연구 (I) - 정상 유동의 특성 -)

  • Ye, A Ran;Das, Rajarshi;Kim, Huey Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2015
  • Investigations into cavity flows have been conducted for decades now, most of them being about zero-pressure-gradient flows entering a cavity on a straight wall. However, the flow over curved walls in real-life situations has not been fully investigated. As cavity flows on curved walls exert centrifugal force, these walls are likely to possess different features from straight walls. To verify this possibility, this study investigated cavity flows on curved walls. Using numerical method, the effect of two variables, namely, radius of curvature on a curved wall and inlet Mach number, were investigated for subsonic and supersonic cavity flows. The result demonstrates that the value of the peak pressure generated inside the cavity increases with the decrease in the radius of curvature on a curved wall or an increase in the inlet Mach number. The total pressure loss in the cavity also results in an increase in the cavity drag.

A Development of NURBS-Based Pre and Post Processor for Structural Analysis of Free-Shaped Beam (자유형상 보요소 해석을 위한 NURBS기반의 전·후처리 모듈 개발)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6673-6678
    • /
    • 2015
  • Recently, the free form buildings are constructed frequently. Exterior and interior components of these buildings have the free cross-section and a curved shape. So, There are many usages of classical finite element having tapered section and free-style shape. Some general commercial applications like ETABS, SAP2000, MIDAS are usually used for the safety evaluation of the free form structures. However, there are some limits in the accuracy of structural analysis and the length of analysis time because a very complicated finite element mesh have to be used. Therefore, In this study, a pre and post program module was developed to take advantage of general 3-D curved beam element which has a free-style curved shape and mathematical backgrounds. Pre-post processing module has been developed in this study was developed to control the curvature of the curved members by the NURBS control points. As a result, fast geometric modeling than was possible commercial applications. In addition, realistic depiction of the shape and behavior patterns were possible because of the free-form building allows visual check of the free form.

A Study on the Fatigue Design of Joint Detail of Vertical Stiffener in Two-Girder Bridge (2거더교의 수직보강재 연결상세부의 피로설계에 관한 연구)

  • Kwon, Soon Cheol;Kyung, Kab Soo;Park, Jin Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • Two-girder bridge is composed of primary members such as deck slab and main girder, and secondary member such as cross beam, vertical and horizontal stiffeners etc,. Two-girder bridge is prescribed as a non-redundant load path structure in the ASSHTO and the Korean Highway Bridge Design Code. Such structure is that if one girder is damaged, problems of function and safety of the bridge are caused. From the reasons, fatigue cracks in two-girder bridge can affect safety of the bridge seriously. Therefore, in this paper, fatigue evaluation was performed at connection parts of vertical stiffener and web with radius of curvature of scallop of vertical stiffener and thickness of web as variables. Such joint is known as a detail which has high possibility of fatigue crack in the bridge. Based upon the analytical results, preferable joint detail in terms of fatigue and simple empirical formula for fatigue evaluation of the detail were suggested.