• 제목/요약/키워드: 수퍼피니싱

검색결과 7건 처리시간 0.024초

스테인레스 강의 경면가공을 위한 효율적 수퍼피니싱 조건의 결정 (Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Stainless Steel)

  • 김상규;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Stainless steel has some excellent properties as the material for the mechanical component. Purpose of this study is carried out to obtain mirror surface on the surperfinishing of stainless steel with high efficiency. To achieve this, we have conducted a series of polishing experiment for stainless steel using abrasive film from the perspective of oscillation speed, the rotational speed of workpiece, contact roller hardness, contact pressure and feed rate. Abrasive film used this study is a micro-finishing film and a lapping film. Furthermore, the polishing characteristics and efficiency of stainless steel is discussed through measuring optimal polishing time and surface roughness. From the obtained results, it was confirmed that efficient superfinishing conditions and polishing characteristic of Stainless steel can be determined.

실험계획법을 이용한 아노다이징 표면 처리된 Al7075 소재의 효율적인 수퍼피니싱 조건 선정에 관한 연구 (Selection of the Efficient Superfinishing Condition on an Anodized Al7075 Surface in Experimental Design)

  • 이순종;최수현;조영태;정윤교;정종윤
    • 한국정밀공학회지
    • /
    • 제33권12호
    • /
    • pp.993-998
    • /
    • 2016
  • In today's manufacturing industries, the demand for light non-ferrous materials is considerable due to the need to improve productivity and manufacturability. Since the surface roughness of a material is important for improving the functionality of machined parts, various techniques for surface treatments have been developed to obtain non-ferrous materials with low roughness. A superfinishing method utilizing polishing films is generally applied to the anodized surface of Al7075 in order to improve its roughness. The objective of this research is to determine through experiment the parameters that facilitate the shortest processing time, using a superfinishing method, for reaching a roughness of Ra $0.2{\mu}m$. This objective is met by applying the Taguchi method in the experiments. Through the experiments of superfinishing, the effectiveness of the parameters adopted for the surface treatment is demonstrated.

연마필름을 이용한 효율적인 수퍼피니싱 조건의 결정에 관한 실험적 연구 (An Experimental Study on the Determination of Efficient Superfinishing Conditions Using Polishing Film)

  • 정성용;박기범;정윤교;정수룡
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, many studies are being conducted to realize high quality polishing technology, but because of high dependence on field experience and insufficient research for ultra-precision polishing technology, it is difficult to establish standardization of polishing conditions. The purpose of this study is to determine high-efficiency superfinishing conditions which are applicable in the field of machining. To achieve this, we have a developed a superfinishing device and conducted a series of polishing experiments for mechanical materials such as SM45C, Brass, Al7075, and Ti, from the perspective of oscillation speed, the rotational speed of the workpiece, contact roller hardness, contact pressure, and feed rate. From the experimental results, it was confirmed that the polishable superfinishing conditions range and efficient feed rate of polishing film can be determined.

경면가공을 위한 수퍼피니싱필름의 효율적인 적용조합에 관한 실험적 연구 (A Experimental Study on Efficient Applicable Combination of Super Finishing Films for Mirror Surface Machining)

  • 조강수;김상규;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.121-128
    • /
    • 2014
  • Superfinishing is essential for mirror surfaces, because among mechanical components cylindrical workpieces such as spindles must maintain precision and reliability with respect to functional characteristics. However, research on standardization of polishing film application combination to obtain mirror surfaces is insufficient. Consequently, this has been a factor in rising costs of mechanical components. Therefore, in this study, experiments have been conducted to determine efficient polishing film application combination for mirror surfaces ranging from ductile materials such as SM45C, brass, aluminium 7075, and titanium to brittle materials such as $Al_20_3$, SiC, $Si_3N_4$, and $ZrO_2$. From the experimental results, efficient polishing film application combination for metallic materials and ceramic materials is confirmed.