• Title/Summary/Keyword: 수치 알고리즘

Search Result 1,356, Processing Time 0.021 seconds

Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data (해양부이 자료를 이용한 황해 남동부 해역 표층 열속 산출)

  • Kim, Sun-Bok;Chang, Kyung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.169-179
    • /
    • 2014
  • Monthly mean surface heat fluxes in the southeastern Yellow Sea are calculated using directly observed airsea variables from an ocean buoy station including short- and longwave radiations, and COARE 3.0 bulk flux algorithm. The calculated monthly mean heat fluxes are then compared with previous estimates of climatological monthly mean surface heat fluxes near the buoy location. Sea surface receives heat through net shortwave radiation ($Q_i$) and loses heat as net longwave radiation ($Q_b$), sensible heat flux ($Q_h$), and latent heat flux ($Q_e$). $Q_e$ is the largest contribution to the total heat loss of about 51 %, and $Q_b$ and $Q_h$ account for 34% and 15% of the total heat loss, respectively. Net heat flux ($Q_n$) shows maximum in May ($191.4W/m^2$) when $Q_i$ shows its annual maximum, and minimum in December ($-264.9W/m^2$) when the heat loss terms show their annual minimum values. Annual mean $Q_n$ is estimated to be $1.9W/m^2$, which is negligibly small considering instrument errors (maximum of ${\pm}19.7W/m^2$). In the previous estimates, summertime incoming radiations ($Q_i$) are underestimated by about $10{\sim}40W/m^2$, and wintertime heat losses due to $Q_e$ and $Q_h$ are overestimated by about $50W/m^2$ and $30{\sim}70W/m^2$, respectively. Consequently, as compared to $Q_n$ from the present study, the amount of net heat gain during the period of net oceanic heat gain between April and August is underestimated, while the ocean's net heat loss in winter is overestimated in other studies. The difference in $Q_n$ is as large as $70{\sim}130W/m^2$ in December and January. Analysis of long-term reanalysis product (MERRA) indicates that the difference in the monthly mean heat fluxes between the present and previous studies is not due to the temporal variability of fluxes but due to inaccurate data used for the calculation of the heat fluxes. This study suggests that caution should be exercised in using the climatological monthly mean surface heat fluxes documented previously for various research and numerical modeling purposes.

Estimation of forest Site Productivity by Regional Environment and Forest Soil Factors (권역별 입지$\cdot$토양 환경 요인에 의한 임지생산력 추정)

  • Won Hyong-kyu;Jeong Jin-Hyun;Koo Kyo-Sang;Song Myung Hee;Shin Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.132-140
    • /
    • 2005
  • This study was conducted to develop regional site index equations for main tree species in Gangwon, Gyunggi-Chungcheong, Gyungsang, and Jeolla area of Korea, using environmental and soil factors obtained from a digital forest site map. Using the large data set obtained from the digital forest map, a total of 28 environmental and soil factors were regressed on site index by tree species for developing the best site index equations for each of the regions. The selected main tree species were Larix 1eptolepis, Pinus koraiensis, Pinus densiflora, Pinus thunbergii, and Quercus acutissima. Finally, four to five environmental and soil factors by species were chosen as independent variables in defining the best regional site index equations with the highest coefficients of determination $(R^2)$. For those site index equations, three evaluation statistics such as mean difference, standard deviation of difference and standard error of difference were applied to the data sets independently collected from fields within the region. According to the evaluation statistics, it was found that the regional site index equations by species developed in this study conformed well to the independent data set, having relatively low bias and variation. It was concluded that the regional site index equations by species had sufficient capability for the estimation of site productivity.

Quality Control of Agro-meteorological Data Measured at Suwon Weather Station of Korea Meteorological Administration (기상청 수원기상대 농업기상 관측요소의 품질관리)

  • Oh, Gyu-Lim;Lee, Seung-Jae;Choi, Byoung-Choel;Kim, Joon;Kim, Kyu-Rang;Choi, Sung-Won;Lee, Byong-Lyol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2015
  • In this research, we applied a procedure of quality control (QC) to the agro-meteorological data measured at the Suwon weather station of Korea Meteorological Administration (KMA). The QC was conducted through six steps based on the KMA Real-time Quality control system for Meteorological Observation Data (RQMOD) and four steps based on the International Soil Moisture Network (ISMN) QC modules. In addition, we set up our own empirical method to remove erroneous data which could not be filtered by the RQMOD and ISMN methods. After all these QC procedures, a well-refined agro-meteorological dataset was complied at both air and soil temperatures. Our research suggests that soil moisture requires more detailed and reliable grounds to remove doubtful data, especially in winter with its abnormal variations. The raw data and the data after QC are now available at the NCAM website (http://ncam.kr/page/req/agri_weather.php).

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.