• Title/Summary/Keyword: 수치해석 모델 개선

Search Result 194, Processing Time 0.031 seconds

Vibration Characteristics Evaluation According to Natural Periods of Structures and Location of a Sky-bridge (구조물의 고유진동주기 및 스카이브릿지 설치위치에 따른 진동특성평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3068-3073
    • /
    • 2013
  • Recently, studies of vibration control performance improvement of tall buildings connected by a sky-bridge have been conducted. In this study, the effect of difference of natural vibration periods of two buildings and install location of a sky-bridge on vibration control performance has been investigated. To this end, 40-story and 50-story building structures were selected as example structures. Analytical models were developed by varying the natural period difference ratio from 1.0 to 1.5. Artificial earthquake load based on KBC2009 was used as an excitation for time history analyses. Based on numerical simulation results, it has been shown that control performance for displacement and velocity of tall buildings connected by a sky-bridge is improved as the difference of natural periods of two buildings increases and the linked story becomes higher. However, in the case of acceleration response, it shows a counter trend compared to displacement and velocity responses.

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.

A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump (고압 다단 펌프의 임펠러 자오면 곡선에 대한 수치 해석적 연구)

  • Kim, Deok Su;Jean, Sang Gyu;Mamatov, Sanjar;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.445-453
    • /
    • 2017
  • This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (${\varepsilon}Ds$) had the highest effect on head increase, while the hub inlet length ($d_{1i}$) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).

Temperature Distribution and It's Contribution to Self-equilibrium Thermal Stress in Bridge (교량 단면 내 온도분포에 따른 자체평형 열응력 해석)

  • Kwak, Hyo-Gyoung;Kwon, Se-Hyung;Ha, Sang-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.531-542
    • /
    • 2011
  • The time-dependent temperature distribution across the section in bridges is determined on the basis of the three-dimensional finite element analyses and numerical time integration in this study. The material properties which change with time and thermal stress of concrete are taken into account to effectively trace the early-age structural responses. Since the temperature distribution is nonlinear and depends upon many material constants such as the thermal conductivity, specific heat, hydration heat of concrete, heat transfer coefficients and solar radiation, three representative influencing factors of the construction season, wind velocity and bridge pavement are considered at the parametric studies. The validity of the introduced numerical model is established by comparing the analytical predictions with results from previous analytical studies. On the basis of parametric studies for four different bridge sections, it is found that the creep deformation in concrete bridges must be considered to reach more reasonable design results and the temperature distribution proposed in the Korean bridge design specification need to be improved.

P-Version Model Based on Hierarchical Axisymmetric Element (계층적 축대칭요소에 의한 P-version모델)

  • Woo, Kwang Sung;Chang, Yong Chai;Jung, Woo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.67-76
    • /
    • 1992
  • A hierarchical formulation based on p-version of the finite element method for linear elastic axisymmetric stress analysis is presented. This is accomplished by introducing additional nodal variables in the element displacement approximation on the basis of integrals of Legendre polynomials. Since the displacement approximation is hierarchical, the resulting element stiffness matrix and equivalent nodal load vectors are hierarchical also. The merits of the propoosed element are as follow: i) improved conditioning, ii) ease of joining finite elements of different polynomial order, and iii) utilizing previous solutions and computation when attempting a refinement. Numerical examples are presented to demonstrate the accuracy, efficiency, modeling convenience, robustness and overall superiority of the present formulation. The results obtained from the present formulation are also compared with those available in the literature as well as with the analytical solutions.

  • PDF

Analytical Methods for the Extraction of PV panel Single-Diode model parameters from I-V Characteristic (I-V 특성곡선을 통한 태양전지 패널의 모델 파라미터 추출 방법)

  • Choi, Sung-Won;Ryu, Ji-Hyung;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.847-851
    • /
    • 2011
  • Photovoltaic System is increasing install capacity based on environmental-friendly characteristics. It have been actively studied to improve the efficiency. In order to design highly efficient system, it is important to understand the output characteristics of solar panels. The single diode model can represent the physical characteristics of solar panel. But it needs complex process such as mutli-step measurement and numerical analysis to get the exact parameters. In this paper, The method for extracting characteristic parameters of the single diode model based on the I-V characteristic curves in the panel manufacturer's data-sheet is presented. To verify the proposed method, solar cell model constructed in simulink. Simulink model output compared with output graph in datasheet.

2-D Stress Analysis by a Dislocation Model (전위모델 을 이용한 2차원 응력해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 1985
  • A new method is suggested for the solution of plane elasticity problems. With use of the dislocation model in the crack problems, the basic scheme of this method is to find equilibrium Burgers vectors of dislocations which are distributed along the boundary of the first fundamental boundary value problems. The stress distribution in the region can be found by superposition of the contributions of each dislocation. The method is applied to three cases with known analytical solutions, and to a V-notched specimen under uniaxial tension. The numerical results are compared with other available solutions. This method is effective and simple in its use, compared with other numerical methods. The method also provides very accurate solutions in the region except near the boundary where the discretization error is significant. The extrapolation method is suggested for the stresses in the boundary region. Extensive application are also suggested for a general estimate of the computational efficiency of the method.

A Study on Optimum Ventilation System in the Deep Coal Mine (심부 석탄광산의 환기시스템 최적화 연구)

  • Kwon, Joon Uk;Kim, Sun Myung;Kim, Yun Kwang;Jang, Yun Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.186-198
    • /
    • 2015
  • This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow. The working environment is deteriorated due to a rise in temperature of a coal mine caused by increase of its depth and carriage tunnels. To improve the environment, the ventilation evaluation on J coal mine is carried out and the effect of a length of the tunnel on the temperature to enhance the ventilation efficiency in the subsurface is numerically analyzed. The analysis shows that J coal mine needs $17,831m^3/min$ for in-flow ventilation rate but the total input air flowrate is $16,474m^3/min$, $1,357m^3/min$ of in-flow ventilation rate shortage. The temperatures were predicted on the two developed models of J mine, and VnetPC that is a numerical program for the flowrate prediction. The result of the simulation notices the temperature in the case of developing all 4 areas of -425ML as a first model is predicted 29.30 at the main gangway 9X of C section and in the case of developing 3 areas of -425ML excepting A area as a second model, it is predicted 27.45 Celsius degrees.

Observations for the Study of Climate-Environment Change by the Before and After Cheonggye Stream Restorations in Seoul (청계천 복원 전후의 기상환경변화 분석을 위한 기상관측 현황)

  • ;;;;;T. Mikami;T. Ichinose;Y. Bai
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.510-511
    • /
    • 2003
  • 서울 도심지 청계천 구역에서 대규모 하천 복원공사가 2003년 7월 1일부터 시작되었다. 공사구간은 연장길이 약 5.84km로서 이러한 도심지내 대규모 복원사업은 세계적으로도 그 사례가 드물다. 도시의 열환경을 해석ㆍ평가하는 데는 대상으로 하는 지역의 온도와 습도의 시ㆍ공간적 기상관측 자료가 중요한 정보가 된다. 그러나, 이러한 평가를 위하여 지금까지는 도시기후 모델을 이용한 수치 시뮬레이션에 의한 평가만 이루어 지고 있었으며, 실측에 의한 열환경 개선효과 등의 검증은 극히 미흡하였다. 사실 실측에 의한 검증을 위하여는 청계천 복원 전후의 관측과 충분한 관측지점 수의 확보가 이루어져야 한다.(중략)

  • PDF