• Title/Summary/Keyword: 수치표고모델(DEM)

Search Result 156, Processing Time 0.025 seconds

Evaluation of 3D-Positioning Method Using X-band SAR Satellite Images - Focused on InSAR, Radargrammetry and RPC (X-band SAR 위성영상의 3차원 위치결정 기법 평가 - 레이더 간섭기법, Radargrammetry, RPC를 중심으로)

  • Song, Yeong Sun;Lee, Jung Han;Jang, In Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.117-125
    • /
    • 2014
  • Korea's first X-band SAR satellite KOMPSAT-5 has been launched in 2013, so the research related to the X-band SAR satellite image is required to increase the utilization of KOMPSAT-5. In this study, we generated a DEM(Digital Elevation Model) using X-band SAR satellite images based on three methods which are InSAR, radargrammetry and RPC(Rational Polynomial Coefficients), and evaluated the performance of each methods. The four stripmap mode TerraSAR-X images taken in Daejeon were used to generate DEM, and accuracy was evaluated using DEM by IKONOS RPC. As results, DEM produced by the InSAR showed the highest accuracy. Also, we knew that RPC could be effective method if you want to create a large area DEM which contains the various elevation.

A Study on the Generation of Digital Elevation Model from IRS-1C Satellite Image Data (IRS-1C 위성데이타를 이용한 수치표고모델 생성에 관한 연구)

  • 안기원;이효성;서두천;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 1999
  • The study aims to develope techniques for generating digital elevation model(DEM) from IRS-1C PAN stereo image data. The bundle adjustment technique was used to determine the satellite exterior orientation parameters as a function of along-track lines. The first degree of polynomial was selected as a function of satellite attitude and position for each scan line. To evaluate the DEM and orthoimage generated, the resulted three dimensional coordinates of the 16 elevation points were computed with the map coordinates. The elevation test showed that root mean square errors of the DEM elevation was about $\pm{16.66m}$ meters.

  • PDF

The Digital Orthophoto Production by the Automative Generation of DEM using Non-photogrammetric Scanner (비측정용 주사기를 사용한 수치표고모델의 자동생성에 의한 수치정사사진 제작)

  • Park, Woon-Yong;Yi, Gi-Chul;Lee, In-Soo;Kim, Jin-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.24-36
    • /
    • 2000
  • This study deals with the optimal method of orthophoto products using the non-photogrammetric scanners. we scanned positive film of aerial photographs at the different resolution and producted the orthophoto using the automatically generated DEM based on the Digital Photogrammetric Workstation, considering aerial image resolutions, DEM interval, resampling method and outpixel size. As a results, the acquired accuracy was worse in horizontal, but good in vertical. So It will be expected that orthophoto using non-photo grammetric scanner is good enough for the acquisition of GIS data and the calculation of soil volumes.

  • PDF

Elevation Acquisition of Cadastral Map using Interpolation of DEM of Digital Map (수치지도 DEM 보간기법에 따른 지적도면 표고획득)

  • Kim Kam-Rae;Ahn Byung-Gu;Lah Yong-Hwa
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.547-550
    • /
    • 2006
  • 본 연구는 지적도면의 효율적인 3차원 위치정보를 구축하기 위하여 수치지도로부터 표고자료를 추출한 후 Kriging, TIN, IDW 보간기법을 적용하여 보간기법별 수치표고모델을 제작하였다. 구축된 수치표고모델를 이용하여 각각의 수치정사영상을 생성하고 수치지적도면과의 중첩 기법을 적용하여 평면위치(x, y)는 연속지적도 상에서 획득하고 높이값(z)은 수치정사영상상에서 획득 지적도면의 3차원 좌표를 구축하였다. 수치지도 DEM을 활용한 지적도면의 3차원 위치정보 구축을 위한 효율적이고 경제적인 방안을 제시하였다.

  • PDF

DEM Generation by the Matching Line Using Exterior Orientation Parameters of the IKONOS Geo Imagery (IKONOS 위성영상의 외부표정요소로부터 정합선 수립에 의한 DEM 생성)

  • Lee, Hyo-Seong;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.367-376
    • /
    • 2006
  • This study determines the optimum polynomial of exterior orientation parameters(EOPs) as a function of line number of linear array scanner. To estimate priori EOPs, meta data of IKONOS scene and ground control points are used. We select a first order polynomial and a constant for position elements modeling and rotation elements modeling. Positioning accuracy of the determined EOPs is compared with that of RPCs bias-corrected by the least squares adjustment. There is almost no difference between accuracies of the two methods. To obtain digital elevation model(DEM), matching line is established by the EOPs. The DEM is compared with DEM generated by ERDAS IMAGINE software, which utilizes the bias-corrected RPCs. Height differences of DEMs by the two methods are ranged within a allowable standard deviation. The produced DEM, therefore, shows accuracy similar to the verified method.

Extraction of DEM in the Southern Tidal Flat of Kanghwa Island using Satellite Image (위성영상을 이용한 강화도 남단갯벌의 DEM 추출)

  • 박성우;정종철
    • Spatial Information Research
    • /
    • v.11 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • The study of geomorphology of tidal flat using remote sensing image has been considered useful because of it's ability to acquire data periodically. Especially, the Near Infrared band of satellite image has been used to divide between land and sea area. This study extracted a borderline of the tidal flat using Landsat-5 images and generated DEM(Digital elevation model) using tide level data as elevation value. DEM is a useful tool for three-dimensional survey of geomorphology and can be used for survey of tidal flat. This study divided 8 images of 1990's into two parts - before 1994 and after 1994 - and generated DEM respectively. In this work, the areas of tidal flats are calculated and it was revealed the area of tidal flat was decreased after 1994.

  • PDF

Reference Points Selection for Interpolation in Digital Elevation Model (수치표고모델의 보간기준점 선정에 관한 연구)

  • 최병길;김욱남;진세일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2003
  • The method that selects reference points for interpolation is very important in Digital Elevation Model. However, there is no definition of an accurate standard until now, so users select the reference points for interpolation at their option. This paper aims to study on the accurate selection of the reference points for interpolation of DEM. This paper analyzed the method using the number of points and the reference points selection method by using the average distance calculated, from irregular points. Based on the analysis of the results, it shows that the Kriging method applying of the average distance is more efficient in construction of DEM.

A Study on the Generation of Digital Elevation Model from SPOT Satellite Data (SPOT 위성데이타를 이용한 수치표고모델 생성에 관한 연구)

  • 안철호;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 1991
  • This study aims to develop techniques for generating Digital Elevation Model(DEM) from SPOT Computer Compatible Tape(CCT) data, so as to present an effective way of generation of DEM for large area. As the first phase of extracting ground heights from SPOT stereo digital data, the bundle adjustment technique was used to determine the satellite exterior orientation parameters. Because SPOT data has the characteristics of multiple perspective projection, exterior orientation Parameters were modelled as a function of scan lines. In the second phase, a normalized cross correlation matching technique was applied to search for the conjugate pixels ill stereo pairs. The preliminary study showed that the matching window size of 13$\times$13 was adequate. After image coordinates of the conjugate pixels were determined by the matching technique, the ground coordinates of the corresponding pixels were calculated by the space intersection method. Then DEM was generated by interpolations. In addtion an algorithm for the elimination of abnormal elevation was developed and applied. The algorithm was very effective to improve the accuracy of the generated DEM.

  • PDF

The Case Study : The Efficiency of Using UAV and 3D-model for Mine Reclamation Work Monitoring (무인항공기와 3차원 지표모델의 광해방지사업 모니터링에 대한 효율성 고찰)

  • Kim, Seyoung;Yu, Jaehyung;Shin, Ji Hye;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigated the effectiveness of Unmanned Aerial Vehicle (UAV) and 3D modeling on mine reclamation monitoring. The high spatial resolution of 3.8 cm ortho-mosaic image and Digital Elevation Model (DEM) are constructed based on UAV air survey. The ortho-mosaic image effectively shows mine reclamation activities and recognize objects and topological changes in the image. The comparative analysis of 3D models between UAV based DEM and report based DEM reveals that total amount of $268,672m^3$ additional dumping of contaminated soil is equivalent to 710,000 ton. It concludes that a UAV based survey enables high accuracy spatial information extraction for mine reclamation activities with high efficiency. It is expected that UAV survey will be very effectively used for preliminary data acquisition and project monitoring for mine reclamation activities.

A Fast Digital Elevation Model Extraction Algorithm Using Gradient Correlation (Gradient Correlation을 이용한 고속 수치지형표고 모델 추출 방법)

  • Chul Soo Ye;Byung Min Jeon;Kwae Hi Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.250-261
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the results of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation parameters obtained from modeling and conjugate points from matching. In the DEM generation system, matching procedure holds most of a processing time, therefore to reduce the time for matching, a new fast matching algorithm using gradient correlation and fast similarity measure calculation method is proposed. In this paper, the SPOT satellite images, level 1A 6000$\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM extraction with the satellite images.