• Title/Summary/Keyword: 수치예보자료

Search Result 159, Processing Time 0.024 seconds

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

Verification of Planetary Boundary Layer Height for Local Data Assimilation and Prediction System (LDAPS) Using the Winter Season Intensive Observation Data during ICE-POP 2018 (ICE-POP 2018기간 동계집중관측자료를 활용한 국지수치모델(LDAPS)의 행성경계층고도 검증)

  • In, So-Ra;Nam, Hyoung-Gu;Lee, Jin-Hwa;Park, Chang-Geun;Shim, Jae-Kwan;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • Planetary boundary layer height (PBLH), produced by the Local Data Assimilation and Prediction System (LDAPS), was verified using RawinSonde (RS) data obtained from observation at Daegwallyeong (DGW) and Sokcho (SCW) during the International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games (ICE-POP 2018). The PBLH was calculated using RS data by applying the bulk Richardson number and the parcel method. This calculated PBLH was then compared to the values produced by LDAPS. The PBLH simulations for DGW and SCW were generally underestimation. However, the PBLH was an overestimation from surface to 200 m and 450 m at DGW and SCW, respectively; this result of model's failure to correctly simulate the Surface Boundary Layer (SBL) and the Mixing Layer (ML) as the PBLH. When the accuracy of the PBLH simulation is low, large errors are seen in the mid- and low-level humidity. The highest frequencies of Planetary boundary layer (PBL) types, calculated by the LDAPS at DGW and SCW, were presented as types Ι and II, respectively. Analysis of meteorological factors according to the PBL types indicate that the PBLH of the existing stratocumulus were overestimated when the mid- and low-level humidity errors were large. If the instabilities of the surface and vertical mixing into clouds are considered important factors affecting the estimation of PBLH into model, then mid- and low-level humidity should also be considered important factors influencing PBLH simulation performance.

제주도를 통과하는 태풍들의 바람 강도 특성

  • Han, Hyeon-Jun;Jeong, Hyeong-Bin;Park, Ja-Rin;Gang, Hyeon-Gyu
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.51-51
    • /
    • 2010
  • 본 연구에서는 태풍 초기화된 수치모델과 AWS (Automatic Weather System) data를 이용하여 제주도를 통과하는 태풍들의 바람 강도 특성을 분석하였다. 태풍이 내습했을 때 제주도 전 지역에서 동시 관측을 하기에는 불가능하다. 따라서 중규모 수치 모델인 Advanced Research WRF v3.0.1을 사용하여 분석하였으며 더욱 정확한 태풍 모의를 위해 Kwon and Cheong (2009)에 의해 개발된 정교한 태풍 초기화 기법을 적용하였다. 태풍 초기화된 자료에 의해 모의된 결과는 The Regional Specialized Meteorological Center (RSMC) Tokyo의 예보 오차와 비교했을 때 더 향상된 결과를 보였으므로 태풍 초기화 기법의 사용은 본 연구에서 하고자하는 태풍들의 바람 강도 분석에 타당하다고 판단하였다. 그리고 모의된 결과는 그에 상응하는 AWS data와의 joint distribution (Moskaitis, 2008) 분석을 통해 비교되었다. 태풍 경로에 따른 제주도 지역의강 풍을 고려하기 위해 각각 제주도의 오른쪽과 왼쪽을 지나가는 2003년 6호 태풍 'SOUDELOR'와 2004년 7호 태풍 'MINDULLE'를 선정하였다. 또한, 모의 결과로부터 제주도 지역에 태풍이 내습했을 때 강풍의 상대적인 크기의 비교를 위해 모의된 태풍의 최대 풍속을 수치 모의로 얻은 10m 바람장의 모든 격자점에 나누어 정규화 하였다. 이를 시간에 대해 평균하여 태풍이 제주도 지역을 통과하는 전체시간에 대한 상대적인 강도 특성을 분석하였다. 수치 모의 결과와 관측 자료와의 joint distribution 분석 결과, 바람의 크기와 경향이 비교적 잘 일치하였다. 강한 풍속과 약한 풍속이 나타나는 지역은 제주도 지역의 주풍향과 지형의 영향에 크게 좌우되었다. 정규화된 바람은 산악의 정상에서 강풍이 관측되고 주 풍향에 대해 풍상측과 풍하측에서 비교적 낮은 풍속이 관측되는 결과를 보였다. 이는 Hoinka (1985)의 산악 위에서의 바람의 특성에 관한 연구에서 얻어진 결과와 유사하다. 서로 다른 경로로 통과하는 두 태풍의 모의 결과에서 제주도의 북서쪽 지역과 남동쪽 지역에서 상대적으로 약한 풍속이 관측되었다. 따라서 해당지역에서는 태풍에 동반되는 강풍의 피해를 적게 입을 것이라는 것을 알 수 있었다.

  • PDF

Daily Reservoir Inflow Prediction using Quantitative Precipitation Model (강수진단모형을 이용한 실시간 저수지 일유입량 예측)

  • Kang, Boo-Sik;Kang, Tae-Ho;Oh, Jai-Ho;Kim, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.291-295
    • /
    • 2007
  • 강수진단모형을 이용하여 저수지 이수운영을 위한 실시간 유량예측기법을 개발하였다. 강수진단모형은 현재 기상청 현업에서 수행중인 강우수치예보를 기반으로 상세 지역의 지형 효과에 의한 강수를 예측하는 정량강수예측모형(QPM; Quantitative Precipitation Model)으로서 부경대학교 환경대기과학과에서 개발된 모형이다. QPM은 중규모 예측 모형으로부터 계산된 수평 바람, 고도, 기온, 강우 강도, 그리고 상대습도 등의 예측 자료를 이용하고, 소규모 상세지형 효과를 고려함으로써 중규모 예측 모형에서 생산된 강수량 예측 값을 상세 지역의 지형을 고려한 강수량 예측 값으로 재구성하여 결과적으로 3km 간격의 상세지역 강우산출과 지형에 따른 강수량의 분포 파악이 용이할 뿐만 아니라 계산 효율성을 개선된 모형이다. QPM 검증을 위하여 기상학적 평가와 수문학적 평가를 수행하였다. 호우 사례별 일강수량의 시공간 분포로 부터, QPM을 활용한 시스템에 의한 예측결과가 원시자료 RDAPS 보다 고해상도의 예측 및 지형효과의 반영도가 높았으며, AWS의 관측자료와 비교하여 보다 높은 예측성을 보여 주었다. 대상기간인 2006년 1월 1일부터 6월 20일까지 관측강우는 총 391.5mm 였으며 RQPM은 실적강우에 비하여 119.5mm 정도 과소산정하고 있으나 분위사상과정을 거치게 되면 351.7mm로서 실적강우에 불과 10.2% 못미치고 있다. 이는 고무적인 결과로 볼 수 있으며 현업에서의 활용성이 기대되는 수준이라 볼 수 있다. 강우-유출모의를 위한 QPM신뢰도를 높이기 위하여 분위사상법(Quantile Mapping)을 이용하여 QPM모의에 존재할 수 있는 계통오차에 대한 추가적인 보정을 수행하였다. 수문학적 평가를 위하여는 장기연속유출모형인 SSARR모형을 기반으로 개발된 RRFS(Rainfall-Runoff Forecast System)을 이용하여 2006년 1월${\sim}$9월까지의 용담댐 유입량에 대하여 모의예측결과와 관측유입량 비교를 통한 검증을 수행하였다. 위 기간중 예측유입량의 RMSE(Root Mean Squared Error), COE(Sutcliffe Coefficient of Efficiency), MAE(Mean Absolute Error), $R^2$값은 각각 7.50, 0.68, 2.59, 0.69 값을 보이고 있다. 본 연구에서는 QPM에 의한 예측성의 향상 및 구축된 시스템에 의한 일강수량의 장기예측 가능성을 확인하였고, 향후 시스템을 현업에 활용하기 위해서 생산된 예측자료의 보다 장기적인 검증을 통한 시스템의 안정화가 필요할 것으로 사료된다.

  • PDF

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

기상-수문 결합 모델을 활용한 수문기상정보 산출기술 개발 연구

  • Ryu, Young;Ji, Hee-sook;Kim, Yoon-jin;Kim, Yeon-Hee;Kim, Baek-Jo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.238-238
    • /
    • 2016
  • 토양수분, 증발산량, 유출량 등의 고해상도 수문기상요소 산출을 위한 지면모델 활용 기술은 기상 및 수문분야에서 널리 활용 중에 있다. 본 연구에서는 미국 국립대기과학연구소(NCAR)에서 개발된 기상-수문 결합모델 WRF-Hydro(Weather Research and Forecasting Model Hydrological modeling extension package)을 활용하여 낙동강 유역에서 발생한 돌발홍수 사례 실험에 적용하여 강우량 및 수문기상요소 전체를 모의함으로써 기상-수문-지면 결합모델을 활용한 수문기상요소 산출하고자 하였다. 이를 기존의 기상모델로부터 입력강제자료를 제공받아 Off-line 형태로 결합된 지면모델(TOPLATS, TOPmodel-based Land Atmosphere Transfer Scheme) 결과와 비교하였고 기상-수문 결합모델의 국내 적용성을 검토하였다. 기상-수문-지면 결합모델(WRF-Hydro)의 초기장 및 경계장은 기상청 현업 모델에서 생성된 국지예보모델자료 1.5km 자료(LDAPS, Local Data Assimilation and Prediction System)를 사용하였으며, 모델의 적분기간은 돌발홍수 사례에 따라 24~36시간을 수행하였다. WRF-Hydro 모델의 물리모수화 방안은 작년까지 기상청에서 현업운영되는 KWRF의 방안들을 준용하였으며, WRF-Hydro 수행을 위해 Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)에서 제공되는 30 m 해상도의 수치표고자료를 GIS(Geographic Information System)를 활용하여 지표유출방향을 설정하였다.

  • PDF

A Method for Correcting Air-Pressure Data Collected by Mini-AWS (소형 자동기상관측장비(Mini-AWS) 기압자료 보정 기법)

  • Ha, Ji-Hun;Kim, Yong-Hyuk;Im, Hyo-Hyuc;Choi, Deokwhan;Lee, Yong Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • For high accuracy of forecast using numerical weather prediction models, we need to get weather observation data that are large and high dense. Korea Meteorological Administration (KMA) mantains Automatic Weather Stations (AWSs) to get weather observation data, but their installation and maintenance costs are high. Mini-AWS is a very compact automatic weather station that can measure and record temperature, humidity, and pressure. In contrast to AWS, costs of Mini-AWS's installation and maintenance are low. It also has a little space restraints for installing. So it is easier than AWS to install mini-AWS on places where we want to get weather observation data. But we cannot use the data observed from Mini-AWSs directly, because it can be affected by surrounding. In this paper, we suggest a correcting method for using pressure data observed from Mini-AWS as weather observation data. We carried out preconditioning process on pressure data from Mini-AWS. Then they were corrected by using machine learning methods with the aim of adjusting to pressure data of the AWS closest to them. Our experimental results showed that corrected pressure data are in regulation and our correcting method using SVR showed very good performance.

Mutual Information Technique for Selecting Input Variables of RDAPS (RDAPS 입력자료 선정을 위한 Mutual Information기법 적용)

  • Han, Kwang-Hee;Ryu, Yong-Jun;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1141-1144
    • /
    • 2009
  • 인공신경망(artificial neural network) 기법은 인간의 두뇌 신경세포의 활동을 모형화한 것으로 오랜 시간동안 발전해 왔으며 여러 분야에서 활용되고 있고 수문분야에서도 인공신경망을 이용한 연구가 활발히 진행되어 왔다. RDAPS와 같은 단기수치예보 자료는 강우의 유무 판단과 같은 정성적인 분석에서 비교적 정확도가 높지만 정확한 강우량의 추정과 같은 정량적인 부분에서는 정확도가 매우 낮으므로 인공신경망 기법과 같은 후처리 기법을 통해서 정확도를 높이게 된다. 인공신경망 기법을 수행할 때, 가장 중요한 것은 입력변수선택(input variable selection)으로 입력 변수의 적절한 선택이 결과값에 큰 영향을 주게 된다. 본 연구에서는 mutual information을 입력 변수 선택 기법으로 채택하여, 인공신경망의 입력변수 선정의 정확도를 알아보고자 한다. Mutual information은 주어진 자료의 엔트로피값을 이용하여 변수들 간의 독립과 종속의 관계를 나타내는 기법으로서, MI값은 '0'에서 '1'의 값을 가지며 '0'에 가까울수록 변수들 간의 관계가 독립적이고 '1'에 가까울수록 종속적인 관계를 나타낸다. 인공신경망의 입력변수선정에 대한 mutual information의 정확도를 알아보기 위해, 기존 입력변수선택 기법과 mutual information을 이용했을 경우의 인공신경망의 처리능력, 정확도를 비교 검토하였다.

  • PDF

Development of radar-based nowcasting method using Generative Adversarial Network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 기법 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.64-64
    • /
    • 2022
  • 이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.

  • PDF

Analysis of Stability Indexes for Lightning by Using Upper Air Observation Data over South Korea (남한에서 낙뢰발생시 근접 고층기상관측 자료를 이용한 안정도 지수 분석)

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.467-482
    • /
    • 2010
  • In this study, characteristics of various stability indexes (SI) and environmental parameters (EP) for the lightning are analysed by using 5 upper air observatories (Osan, Gwangju, Jeju, Pohang, and Baengnyeongdo) for the years 2002-2006 over South Korea. The analysed SI and EP are the lifted index, K-index, Showalter stability index, total precipitable water, mixing ratio, wind shear and temperature of lifting condensation level. The lightning data occurred on the range of -2 hr~+1 hr and within 100 km based on the launch time of rawinsonde and observing location are selected. In general, summer averaged temperature and mixing ratio of lower troposphere for the lightning cases are higher about 1 K and $1{\sim}2gkg^{-1}$ than no lightning cases, respectively. The Box-Whisker plot shows that the range of various SI and EP values for lightning and no lightning cases are well separated but overlapping of SI and EP values between lightning and no lightning are not a little. The optimized threshold values for the detection of lightning are determined objectively based on the highest Heidke skill socre (HSS), which is the most favorable validation parameter for the rare event, such as lightning, by using the simulation of SI and EP threshold values. Although the HSS is not high (0.15~0.30) and the number and values of selected SI and EP are dependent on geographic location, the new threshold values can be used as a supplementary tool for the detection or forecast of lightning over South Korea.