• Title/Summary/Keyword: 수치미분법

Search Result 189, Processing Time 0.027 seconds

Vibration Analysis of Circular Plate with Continuously Varying Thickness (가변두께를 가지는 원판의 진동해석에 관한 연구)

  • Shin, Young Jae;Jaun, Su Ju;Yun, Jong Hak;Yoo, Yeong Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • paper presents the results of the use of the differential transformation technique in analyzing the free vibration of circular plates.calculations were carried out and were compared with previously published results. The results that were obtained when this method was used coincide with the results of The present analysis shows the usefulness and validity of differential transformation in solving a solid-circular and annular-plate problem in terms of free-vibration responses.

Development of 2DH hydrodynamic and scalar transport model based on hybrid finite volume/finite difference method (하이브리드 FVM/FDM 기반의 2차원 흐름 및 스칼라 이송 모형 개발)

  • Hwang, Sooncheol;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.105-105
    • /
    • 2021
  • 본 연구에서는 2차원 비선형 천수모형과 수심평균된 스칼라 이송모형을 해석하는 수치모형에 대해 기술하였다. 수치모형의 정확성을 보장함과 동시에 안정성을 높이기 위해 유한체적법, 플럭스 재구성 및 minmod 제한자를 사용하였다. 비선형 천수방정식의 이송항과 바닥 경사항은 계산된 수심의 양수 보존과 흐름의 정상 상태를 보장하기 위한 second order well-balanced positivity preserving central-upwind method를 이용하여 수치적으로 이산화되었다. 마찬가지로, 이송-확산 방정식 내 이송항은 동일한 2차 풍상차분법을 통해 수치적으로 풀이하였다. 격자점 경계면에서의 불연속으로 인한 수치진동을 방지하기 위해 이송항의 계산에 포함된 보존항의 차이로 인해 발생하는 스칼라의 수치확산을 최소화하기 위해 무차원의 비소산함수를 도입하였다. 또한, 확산항은 유한차분법을 이용하여 이산화하였다. 제안된 수치모형은 시간미분항의 계산을 위해 오일러 기법을 적용하여 계산된 수심 및 스칼라의 양수 보존여부와 함께 정지된 흐름의 정상 상태의 보존여부를 확인하였다. 제안된 수치모형의 해석 정확성을 평가하기 위해 1, 2차원 공간 내 다양한 흐름 조건에서의 해석해를 이용한 3개의 벤치마크 테스트를 수행하였다. 평균 제곱근 오차(Root Mean Squared Error, RMSE)를 산정하여 수치모형의 성능을 정량적으로 평가하였으며, 비소산함수를 적용함에 따라 스칼라의 수치확산이 감소하게 되었음을 확인하였다. 또한, 세 차례의 벤치마크 테스트 결과는 공통적으로 수치모형에 의해 계산된 결과값이 비소산함수를 고려함에 따라 해석해와 잘 일치함을 확인하였다.

  • PDF

Vibration and Stability Characteristics of Cylindrical Panels by the Galerkin Method (Galerkin 해석법에 의한 원통 Panel의 진동 및 좌굴특성)

  • Park, Moon Ho;Park, Sung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 1991
  • This paper presents a numerical analysis procedure and a characteristics for vibration and buckling of the cylinderical panels. The panels with simply-simply or simply-clamped edge supports are subjectes to circumferential compressive or flexural stresses. The differential equations governing vibration and buckling for these panels are derived by using the fundamental differential equation of the Love-Timoshenko and are solved numerically via the Galerkin method. The panel with simply-clamped edge supports is used a trigonometric function or a eigen function of a beam as a trial function and the effects of trial functions on numerical solutions are displayed. Numerical results are presented to demonstrate the effects of the flexural parameters in natural frequencies and coefficients of critical buckling and some typical mode shapes of vibration and buckling are also presented.

  • PDF

Numerical Analysis in Electromagnetic Problem Using Wavelet-Galerkin Method (Wavelet-Galerkin 방법을 이용한 전자기장 문제의 수치 해석)

  • Cho, Jung-Kyun;Lim, Sung-Ki;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.174-176
    • /
    • 1997
  • 편미분 방정식의 형태로 나타나는 많은 전자기장 문제들을 유한요소법이나 유한차분법 등의 수치해석적 방법으로 해결하려는 경우 시스템 행렬을 구성하게 된다. 이때 해석영역의 요소수가 많을수록 행렬의 조건수(condition number)는 다항식(polynomial) 증가를 갖게 되며, 이는 풀어야 할 선형시스템에서 반복 연산 과정의 속도를 떨어뜨리는 결과를 야기한다. 이러한 결과를 wavelet을 기저 함수로 쓰게 되면, 더 높은 분해능(resolution)의 해를 유한 요소법이나 유한 차분법에서와 같은 요소 분할 과정이 없이 Mallat 변환이라는 간단한 과정을 통해 구할 수 있으며, 본 논문에서는 Daubechies의 wavelet 함수를 기저 함수로 사용하여 전자기장 문제에 적용함으로서 수치해석에 있어서 wavelet 함수의 적용이 많은 장점을 갖고 있음을 보인다.

  • PDF

Application of the Preconditioned Conjugate Gradient Method to the Generalized FEM with Global-Local Enrichment Functions (켤레구배법의 전체-국부 확장함수를 지닌 일반유한요소해석에의 응용)

  • Choi, Won-Jeong;Kim, Hee-Cheul;Lee, Yoeng-Hak;Kim, Dae-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.768-772
    • /
    • 2011
  • 본 논문에서는 켤레구배법을 이용해 전체-국부 확장함수를 지닌 일반유한요소법을 해석하는 방식을 제안한다. 이 기법은 편미분방정식의 해에 대한 정보가 충분하지 않은 경우에도 수치해석적인 방법으로 일반 유한요소법의 확장함수를 구성할 수 있으며 해석 과정 중 추가의 계산 없이 좋은 성능을 지닌 전처리값 및 초기 추측치를 활용할 수 있어 국부적으로 복잡한 거동을 보이는 문제의 해석에 유리하다. 본 논문에 포함된 수치해석 예제의 결과는 제안된 기법이 가우스 소거법과 같은 직접 솔버를 이용하는 경우보다 수치 해석적으로 더 효율적임을 보여준다.

  • PDF

Post-Buckling of Shear Deformable Uniform Columns Under a Combined Load (조합하중을 받는 전단변형 기둥의 좌굴 후 거동 해석)

  • Yoo, Yeong Chan;Shin, Young Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.313-320
    • /
    • 2003
  • The governing equation of the post-buckling of shear-deformable uniform columns under a combined load consisting of a uniformly distributed axial load and a concentrated load at a free end was derived and the post-buckling analysis was investigated by using differential transformation. The loads were obtained for various end-slopes. The results obtained by the present method agree well with published results. In this paper, the differential transformation method was illustrated through its application to the non-linear differential equation of the post-buckling. It is expected that applications of the method to more challenging problems will are expected follow in future to ensue.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

Analysis of 1-D Stefan Problem Using Extended Moving Least Squares Finite Difference Method (확장된 이동최소제곱 유한차분법을 이용한 1D Stefan문제의 해석)

  • Yoon, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.308-313
    • /
    • 2009
  • 본 논문은 확장된 이동최소제곱 유한차분법을 이용하여 1차원 Stefan 문제를 해석할 수 있는 수치기법이 제시한다. 이동하는 경계의 자유로운 묘사를 위해 요소망이나 그리드 없이 절점만을 사용하는 이동최소제곱 유한차분법을 사용하였으며, 계면경계의 특이성을 모형화하기 위해 Taylor 다항식에 쐐기함수를 도입했다. 지배방정식은 안정성이 높은 음해법(implicit method)을 이용하여 차분하였다. 미분의 특이성을 갖는 이동경계를 포함한 반무한 융해문제의 수치해석을 통해 확장된 이동최소제곱 유한차분법이 높은 정확성과 효율성을 갖는 것을 보였다.

  • PDF

Explicit and Implicit Dynamic Analysis Using MLS Difference scheme (이동최소제곱 차분법을 이용한 explicit 및 implicit 2차원 동적해석)

  • Kim, Kyeong-Hwan;Lee, Sang-Ho;Yoon, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.719-722
    • /
    • 2011
  • 본 연구에서는 이동최소제곱 차분법을 2차원 동적고체문제를 해석하기 위하여 확장시켰으며 Newmark ${\beta}$ 방법을 통해 explicit와 implicit 시간적분법을 모두 적용하여 그 차이를 비교하였다. 이동최소제곱 차분법은 Taylor 다항식을 이용하여 미분계산을 근사화 함으로써 내부 및 경계에서도 강형식을 그대로 이용할 수 있다. 그래서 계산이 빠르고 수치적분이 필요하지 않아 무요소법의 장점을 잘 살릴 수 있고 해석차수를 손쉽게 조정할 수 있어 cubic 등의 고차 근사계산이 간편하다. 두 가지 수치예제를 통하여 동적해석에 대한 이동최소제곱 차분법의 적용성과 안정성을 검증하였다.

  • PDF

Buckling Loads and Post-Buckling Behaviors of Shear Deformable Columns with Regular Cross-Section (전단변형을 고려한 정다각형 단면 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee, Byeoung Koo;Lee, Tae Eun;Kwon, Yun Sil;Kim, Sun Gi
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.683-691
    • /
    • 2001
  • Numerical methods are developed for solving the elastica and buckling load of tapered columns with shear deformation, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the rotation at left end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF