• Title/Summary/Keyword: 수치감쇠

Search Result 403, Processing Time 0.025 seconds

Tensile Force Estimation of Externally Prestressed Tendon Using SI technique Based on Differential Evolutionary Algorithm (차분 진화 알고리즘 기반의 SI기법을 이용한 외부 긴장된 텐던의 장력추정)

  • Noh, Myung-Hyun;Jang, Han-Taek;Lee, Sang-Youl;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.9-18
    • /
    • 2009
  • This paper introduces the application of DE (Differential Evolutionary) method for the estimation of tensile force of the externally prestressed tendon. The proposed technique, a SI (System Identification) method using the DE algorithm, can make global solution search possible as opposed to classical gradient-based optimization techniques. The numerical tests show that the proposed technique employing DE algorithm is a useful method which can detect the effective nominal diameters as well as estimate the exact tensile forces of the externally prestressed tendon with an estimation error less than 1% although there is no a priori information about the identification variables. In addition, the validity of the proposed technique is experimentally proved using a scale-down model test considering the serviceability state condition without and with the loss of the prestressed force. The test results prove that the technique is a feasible and effective method that can not only estimate the exact tensile forces and detect the effective nominal diameters but also inspect the damping properties of test model irrespective of the loss of the prestressed force. The 2% error of the estimated effective nominal diameter is due to the difference between the real tendon diameter with a wired section and the FE model diameter with a full-section. Finally, The accuracy and superiority of the proposed technique using the DE algorithm are verified through the comparative study with the existing theories.

Experimental Study on the Analysis and Estimation of Metacentric Height in Response to Roll Period and Moment of Inertia Variations in Ships (선박의 횡요주기와 관성모멘트 변화에 따른 GM 추정 및 분석을 위한 실험 연구)

  • LeeChan Choi;JungHwi Kim;DongHyup Youn
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.380-388
    • /
    • 2023
  • This study estimates the metacentric height (GM) of a model ship by varying the transverse weight distribution, considering the effects of the roll period and moment of inertia, and compares it with the GM values measured by the inclining test. In the process, the relationship between the values is analyzed. Three types of ships-a 7-ton fishing vessel, 20-ton fishing vessel, and KRISO Very Large Crude-oil Carrier (KVLCC)-were used for the experiment and comparison. The roll period and moment of inertia were measured using the free roll decay and swing frame tests, and the GM was measured using inclining test. The estimated GM from the roll period and moment of inertia showed the same trend as the GM measured using the inclining test in the change of the weight distribution. However, the GM values measured using the inclining test were lower. Therefore, additional correction factors or parameters other than the roll period and moment of inertia are necessary for estimating GM. In the future, the relationship between the weight center and the estimated GM will be analyzed to derive the correction factors.

Assessment of Quantitative Analysis Methods for Lung F-18-Fluorodeoxyglucose PET (폐 종양 FDG PET 영상의 다양한 추적자 역학 분석 방법 개발과 유용성 고찰)

  • Kim, Joon-Young;Choi, Yong;Choi, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Kim, Yong-Jin;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.332-343
    • /
    • 1998
  • Purpose: The purpose of this study was to assess the diagnostic accuracy of various quantitation methods using F-18-fluorodeoxyglucose (FDG) in patients with malignant or benign lung lesion. Materials and Methods: 22 patients (13 malignant including 5 bronchoalverolar cell cancer; 9 benign lesions including 1 hamartoma and 8 active inflammation) were studied after overnight fasting. We performed dynamic PET imaging for 56 min after injection of 370 MBq (10 mCi) of FDG. Standardized uptake values normalized to patient's body weight and plasma glucose concentration (SUVglu) were calculated. The uptake rate constant of FDG and glucose metabolic rate were quantified using Patlak graphical analysis (Kpat and MRpat), three compartment-five parameter model (K5p, MR5p), and six parameter model taking into account heterogeneity of tumor tissue (K6p, MR6p). Areas under receiver operating characteristic curves (ROC) were calculated for each method. Results: There was no significant difference of rate constant or glucose metabolic rate measured by various quantitation methods between malignant and benign lesions. The area under ROC curve were 0.73 for SUVglu, 0.66 for Kpat, 0.77 for MRpat, 0.71 for K5p, 0.73 for MR5p, 0.70 for K6p, and 0.78 for MR6p. No significant difference of area under the ROC curve between these methods was observed except the area between Kpat vs. MRpat (p<0.05). Conclusion: Quantitative methods did not improve diagnostic accuracy in comparison with nonkinetic methods. However, the clinical utility of these methods needs to be evaluated further in patients with low pretest likelihood of active inflammation or bronchoalveolar cell carcinoma.

  • PDF