• Title/Summary/Keyword: 수축 및 균열

Search Result 223, Processing Time 0.022 seconds

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (II) Evaluation of Restrained Shrinkage Characteristics and Prediction of Degree of Restraint (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (II) 구속 수축 특성 평가 및 구속도 예측)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.317-325
    • /
    • 2012
  • In this study, to evaluate the shrinkage behavior of ultra high performance fiber reinforced concrete (UHPFRC) under restrained condition, restrained shrinkage test was performed according to ring-test mostly used at home and abroad. Ring-test was performed with the various thicknesses and radii of inner steel ring to give different degree of restraint. Free shrinkage and tensile tests were carried out simultaneously to estimate the degree of restraint, stress relaxation, and shrinkage cracking potential. Test results indicated that the average steel strain and residual tensile stress were reduced as the thicker inner steel ring was used, whereas degree of restraint was increased. The steel strain, residual tensile stress and degree of restraint were hardly affected by the size of radius of inner ring. In the case of all ring specimens, shrinkage crack did not occur because the residual tensile stress was lower than the tensile strength. About 39~65% of the elastic shrinkage stress was relaxed by the sustained interface pressure, and the maximum relaxed stress was increased as the thicker inner ring was applied. Finally, the degree of restraint with age was predicted by performing non-linear regression analysis, and it was in good agreement with the test results.

Quantitative Estimation of Joint Spacing for Concrete Slab to Prevent Cracking of Drying Shrinkage (건조수축에 따른 균열 방지를 위한 콘크리트 슬래브의 정량적 줄눈 간격 산정)

  • Lee, Su-Jin;Lee, Hoi-Keun;Lee, Seung-Hoon;Won, Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.289-294
    • /
    • 2011
  • The installation of joint is to prevent random cracking due to drying shrinkage stress of concrete slab. However contraction joint spacing is empirically implemented into slab constructions without detail calculation based on quantitative criteria. In this study, shrinkage strain of concrete due to concrete shrinkage stress was measured to suggest joint spacing based on the study results. The test environmental conditions were applied temperature of $15^{\circ}C$ and relative humidity of 60%. The design compressive strength used was 30 MPa and 40 MPa, which are currently used in concrete slab designs. The drying shrinkage test result was applied to drying shrinkage models (ACI 209R, CEB MC 90, B3, GL 2000 and Sakata). The results showed that the most appropriate model was ACI 209R model. Based on the research findings, quantitative contraction joint spacing locations were calculated.

A Study on the Hydration Reaction Model of Expansive Additive of Ettringite-Gypsum Type (에트링가이트-석탄 복합계 팽장재의 수화반응 모델에 관한 연구)

  • Park Sun Gyu;Takahumi Noguchi;Kim Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.581-586
    • /
    • 2005
  • High-performance concrete (HPC), which is particularly sensitive to self-desiccation, is required to be durable even in severe environmental conditions, i.e. costal area, cold district, etc. However, in recent years, some attention was particularly given to cracking sensitivity of high performance concrete at early age. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age under restrained condition, nd, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. This shrinkage-introduced crack produces a major serviceability problem for concrete structures. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of autogenous shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. As a result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

Effects of Axiral Restraint on flexural and Shear Behavior in High Strength Reinforced Concrete Beams (고강도 철근 코크리트 휨 부재의 휨.전단거동에 미치는 축방향 구속의 영향)

  • 양은익;고훈범;김진근;이성태
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.207-216
    • /
    • 1997
  • 본연구는 축방향 변형 구속이 고강도 콘크리트 휨부재의 휨 전단거동에 미치는 영향을 조사하기 위한 것으로, 수화열과 건조수축에 기인하는 축방향 변형과 재하에 의한 축방향 변형을 구속한 부재 및 무구속 부재에 대하여 휨파괴와 전단파괴 실험을 실시하였다. 타설 직후부터 축변형을 구속한 실험체의 재하시 강성은 재하전의 구속으로 발생한 관통균열의 영향을 받아 무구속 실험체의 강성보다 낮지만, 재하시의 축변형 구속에 따른 압축구속력의 상승으로 인하여 강성의 크기는 역전되었다 축변형이 완전히 구속된 휨부재의 휨강도는 무구속 부재보다 20%이상 상승하지만 변형능력은 감소하는 것으로 나타났으며, 재하전의 축변형 구속에 의한 관통균열(균열폭 0.1mm 미만)은 부재의 전단내력 및 전단균열 진전 형상에 영향을 미치지 않았다.

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.

Simplified Evaluation of Long-Term Deflection of Reinforced Concrete Flexural Members (철근콘크리트 휨재의 장기처짐 예측을 위한 간략 평가)

  • Chang, Dong-Woon;Kang, Jee-Hoon;Chae, Seung-Yoon;Kim, Jae-Yo;Eom, Tae-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.6-9
    • /
    • 2011
  • 지속하중을 받는 철근콘크리트 휨부재는 크리프, 건조수축 등 장기거동에 의하여 처짐이 증가된다. ACI318-08, KCI 2007 등 현행 구조설계기준의 장기처짐 평가방법은 인장 및 압축 철근비, 배근상세, 재료 강도 등 설계변수에 따른 장기처짐의 변화를 합리적으로 고려하기 어렵다. 본 연구에서는 장기거동에 의한 힘의 평형조건과 변형률 적합조건을 사용하여 크리프와 건조수축에 의한 철근콘크리트 균열단면의 장기변형을 예측하는 간략 평가식을 제안하였다. 장기변형 평가 시 콘크리트와 철근은 선형탄성거동을 가정하였고, 시간에 따른 콘크리트와 철근 사이의 응력재분배를 고려하기 위하여 재령보정탄성계수법을 적용하였다. 변수연구 및 검증 결과, 철근콘크리트 휨재의 장기처짐은 설계변수의 영향으로 달라질 수 있고, 제안된 방법은 이러한 장기처짐의 변화를 비교적 정확하게 예측하는 것으로 나타났다.

  • PDF

Prediction Model on Autogenous Shrinkage of High Performance Concrete (고성능 콘크리트의 자기수축 예측모델에 관한 연구)

  • Yoo, Sung-Won;Soh, Yang-Sub;Cho, Min-Jung;Koh, Kyung-Taek;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.97-105
    • /
    • 2006
  • The autogenous shrinkage of high-performance concrete is important in that it can lead the early cracks in concrete structures. The purpose of the present study is to explore the autogenous shrinkage of high-performance concrete with admixture and to derive a realistic equation to estimate the autogenous shrinkage model of that. For this purpose, comprehensive experimental program has been set up to observe the autogenous shrinkage for various test series. Major test variables were the type and contents of admixture and water-cement ratio is fixed with 30%. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased the autogenous shrinkage. Also, the autogenous shrinkage of HPC is found to decrease with increasing shrinkage reduction agent and expansive additive. A prediction equation to estimate the autogenous shrinkage of HPC with admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral and chemical admixture.

Evaluation of Thermal and Shrinkage Stresses in Hardening Concrete Considering Early-Age Creep Effect (초기재령 콘크리트의 크리프를 고려한 온도 및 수축응력 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.382-391
    • /
    • 2002
  • This study is devoted to the problems of thermal and shrinkage stresses in order to avoid cracking at early ages. The early-age damage induced by volume change has great influence on the long-term structural performance of the concrete structures such as its durability and serviceability To solve this complex problem, the computer programs for analysis of thermal and shrinkage stresses were developed. In these procedures, numerous material models are needed and the realistic numerical models have been developed and validated by comparison with relevant experimental results in order to solve practical problems. A framework has been established for formulation of material models and analysis with 3-D finite element method. After the analysis of the temperature, moisture and degree of hydration field in hardening concrete structure, the stress development is determined by incremental structural formulation derived from the principle of virtual work. In this study, the stress development is related to thermal and shrinkage deformation, and resulting stress relaxation due to the effect of early-age creep. From the experimental and numerical results it is found that the early-age creep p)ays important role in evaluating the accurate stress state. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and shrinkage stresses and to find measures for avoiding detrimental cracking of concrete structures at early ages.

Influence of Internal Stress on Plating Crack in Ni-W Alloy Electroplating (Ni-W 합금도금의 피막 균열에 미치는 도금 내부응력의 영향)

  • Kim, Yu-Sang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.137-138
    • /
    • 2015
  • Ni-W 합금도금은 내마모성, 내산성 및 내열성 등의 여러 특성을 가지며 높은 피막경도도 안정하게 얻어지기 때문에 경질 Cr 도금의 대체도금으로서 유리 성형용 금형, 롤러 표면재료, 자동차 접동부품 등 다양한 공업 분야와 제품에 적용되고 있다. Ni-W 합금도금은 도금액 및 전해조건에 따라서 도금 피막에 균열이 생기는 경우가 있다. 도금 피막의 균열 발생요인으로서 도금재료의 환경온도에 의한 열응력, 도금 피막과 기재와의 팽창 수축 차이에 의한 영향을 생각할 수 있다. 도금 내부응력의 발생이유로서 공석한 수소의 이탈설, 결정합체설, 이외에 과잉 에너지설 및 결자결함설도 제안되고 있다.

  • PDF

Influence of Water-Binder Ratio and Expansion Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite with Hybrid Steel and Polyethylene Fibers (강섬유와 폴리에틸렌 섬유를 함께 혼입한 SHCC의 물결합재비와 팽창재 치환유무에 따른 역학적 특성)

  • Kim, Sung-Ho;Lee, Young-Oh;Kim, Hee-Jong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • Hybrid SHCC is being researched actively for its excellent performance in controlling macro and micro cracks using macro and micro fibers, respectively. However, a significant autogenous shrinkage of SHCC is expected since it possesses high unit cement volume in its mix proportion, resulting in autogenous shrinkage cracks. Therefore, this study was performed to evaluate mechanical property of shrinkage-reducing type hybrid SHCC mixed together with steel fiber and PE fiber with excellent micro/macro crack controlling performance. In order to evaluate mechanical property of shrinkage-reducing type hybrid SHCC, replacement ratios of 0% and 10% of expansive admixture and water to binder ratios of 0.45, 0.3, and 0.2 were considered as variables. Then, shrinkage, compressive, flexural, and direct tensile tests were performed. The test results showed that mix proportion with W/B 0.3 significantly improved mechanical performance by using 10% replacement of expansive admixture.