• Title/Summary/Keyword: 수축저감제 첨가율

Search Result 5, Processing Time 0.022 seconds

Drying Shrinkage and Strength Properties of High-Fluidity Polymer-Modified Mortar (고유동 폴리머시멘트모르타르의 건조수축 및 강도 특성)

  • Joo Myung-Ki;Lee Youn-Su;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.651-657
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tends to decrease nth increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tends to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the polymer-modified mortars using redispersible polymer powder tends to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the polymer-modified mortars using redispersible polymer powder decreases with increasing polymer-cement ratio and shrinkage-reducing agent content.

Drying Shrinkage and Strength Properties of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머시멘트 모르타르의 건조수축 및 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

Properties of shrinkage reducing agent and mortar used Anhydrite and C12A7-based slag (무수석고와 C12A7계 슬래그를 사용한 수축저감제 및 모르타르 특성)

  • Park, Soo-Hyun;Chu, Yong-Sik;Seo, Sung-Kwan;Park, Jae-Wan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 2013
  • In this study, shrinkage reducing agent was fabricated with $12CaO{\cdot}7Al_2O_3(C_{12}A_7)$ of CA-based slag and anhydrite. Mortars added shrinkage reducing agent were experimented for enhancement of shrinkage reduction and compressive strength. The properties of setting time, length change and compressive strength of mortar changed with mixing ratios. From 0% to 6% $C_{12}A_7$-based slag, setting times got shorter and length changes of mortars were similar to 7days. From 1day to 7days, the more mortar had $C_{12}A_7$-based slag, the higher compressive strength. At 28days, compressive strength of mortars with 6% $C_{12}A_7$-based slag was about 36MPa. After 35days, mortar with 6% $C_{12}A_7$-based slag had the lowest ratio of shrinkage reduction. So mortar with 6% $C_{12}A_7$-based slag had the excellent characteristics such as compressive strength and shrinkage reduction ratio.

Study on Prediction of Drying Shrinkage of Concrete using Shrinkage Reducing Agent (수축저감제를 사용한 콘크리트의 건조수축 예측에 관한 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2016
  • Shrinkage Reducing Agent(SRA) was developed in order to control drying shrinkage cracks in concrete, and the use of SRA is increasing since it can control drying shrinkage cracks and improve the quality of concrete structures. Although there are many types of prediction equations of drying shrinkage strain, there is no prediction method which can consider the effect of SRA up to the present. Therefore, it is impossible to predict the tensile stress generated by drying shrinkage of SRA concrete, and to investigate the quantitative serviceability limit state of SRA concrete. In this study, the drying shrinkage of SRA concrete was investigated by experiment and analysis in order to suggest the predictability of drying shrinkage of SRA concrete. As a result, AIJ model, ACI model, GL2000 model showed there was a correlation between the predicted values and the experimental values within the error range of ${\pm}10%$. However, CEB-FIP model and B3 model underestimated the experimental values.

Effect of Fluorine-Silicate Hybrid Based Crack Reducing Agent on the Resistance for Shrinkage Crack and Gas Permeability of Concrete (불소-실리카 복합형 균열저감제가 콘크리트의 수축균열 저항성 및 투기성에 미치는 영향)

  • Lee, Man-Ik;Park, Jong-Hwa;Nam, Jae-Hyun;Kim, Do-Su;Kim, Jae-On
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.631-637
    • /
    • 2006
  • In this study, fundamental properties such as fresh and hardened performance of concrete mix(specification : 25-24-18) added fluorine-silicate hybrid based crack reducing agent(FS) were measured. Addition of FS ranged from 0.5% to 2.0% at intervals 0.5% based on cement weight. Adequate dosage(0.5%) of FS derived from basic properties measurements applied and compared resistance for shrinkage crack. The permeability of concrete in the absence(24-S-0.0) and presence(24-S-0.5) of evaluated at a mock-up sized concrete. Concrete added FS improved resistance for shrinkage crack and consequently crack number, length and area decreased to $50{\sim}74.4%$ compared non-added. As well, by the addition of FS, the resistance for permeability and penetration depth to concrete surface region increased 67% and 40%, respectively. Therefore it was confirmed that shrinkage crack resistance and permeability of concrete could be improved by the addition of FS.