• Title/Summary/Keyword: 수축생성기

Search Result 43, Processing Time 0.022 seconds

Changes of Arachidonic Acid Metabolites in Silica-Exposed Alveolar Macrophage of Rats (유리규산분진에 폭로된 흰쥐의 폐포대식세포에 있어 아라키돈산 대사산물의 변화)

  • Lim, Young;Yun, Im-Goung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.4
    • /
    • pp.304-309
    • /
    • 1992
  • Background: The alveolar macrophage may metabolize arachidonic acid through cyclooxygenase- and lipoxygenase- catalyzed pathways to produce a variety of metabolites of arachidonic acid. The production of these metabolites of arachidonic acid may enhance the defensive ability of the challenged lung. However, continued stimulation with the consequent production of proinflammtory metabolites of arachidonic acid, may ultimately enhance the disease process by contributing to chronic bronchoconstriction, fibrosis, and the persistent release of toxic oxygen species. Silicosis is an example of a disease process resulting from chronic exposure of the lung to foreign particles. This study was carried out to evaluate the changes of arachidonic acid metabolites from macrophages in experimental silicosis. Methods: We measured $PGE_2$, and $LTB_4$ in cultured macrophages taken from rats by radioimmunoassay at 24 and 48 hours after stimulation by silica dust, natural carbon dust, lipopolysaccharide, calcium ionophore (A23187) and medium (RPMI) as a control. For the experimental silicosis, 50 mg silica in 0.5 ml saline was administered intratracheally into the rat and grown to 20 weeks and measured $PGE_2$, and $LTB_4$ in the cultured macrophages lavaged from that rat. The used stimulants were the same as above. Results: 1) The amount of $PGE_2$ in the cultred macrophages from normal rat was significantly decreased in the group which was stimulated with silica dust for 48 hours compare with control non-stimulated group. 2) In the experimental silicosis group, $PGE_2$, release in cultured macrophages after 48 hours incubation with silica and natural carbon dust tended to be lower than those of non-stimulated group. 3) There were marked changes of $LTB_4$ in the groups of normal rats which were incubated with silica for 24, 48 hours and natural carbon for 48 hours compared with non-stimulated group. 4) In the experimental silicosis group, the release of $LTB_4$ was significantly increased macrophages cultured with silica and natural carbon dust after 24 and 48 hours incubation compared with non-stimulated group. Conclusion: The results of these studies suggest that the in vitro exposure of rat alveolar macrophge to silica and coal dust results in an alteration in alveolar macrophage metabolism of arachidonic acid that may promote an inflammatory reaction in lung tissue.

  • PDF

Quality Properties of Capsule Type Meju Prepared with Aspergillus oryzae (Aspergillus oryzae를 이용한 캡슐형 메주의 품질특성)

  • 최재훈;권선화;이상원;남상해;최상도;박석규
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.339-346
    • /
    • 2003
  • In order to improve some problems such as contamination of undesirable mold, mycotoxin production and excessive drying on the surface of traditional meju, we developed a capsule type-meju(CM) coated with steamed black bean and Aspergillus oryzae - rice koji(0.3%, w/w) mixture to surface of traditional meju and fermented at 25$^{\circ}C$ for 14 days under 80% relative humidity. Contamination of undesirable mold on the surface of CM was not detected within 2 weeks and some genus Penicillium molds on control meju without koji were found naturally after 12 days of fermentation. The moisture content of meju was showed to be in the range of 34.7 - 29.4% being 32.7%(w/w) of mean value. Titratable acidities in CMs prepared with black bean(BCM) and soybean(SCM) were much higher than that in control meju, and BCM was similar to SCM. Free sugar content in BCM(123.98 mg%) was 10 times and 2.1 times higher than that in control meju(15.02 mg%) and SCM(59.85 mg%), respectively. Amino type nitrogen content in control meju was 147.00 mg% and its content in BCM(255.50 mg%) was 1.37 times higher than that in SCM(187.25 mg%). Total organic acid content in BCM(95.98 mg%) and SCM(1l9.98 mg%) were much higher than that in control meju(26.44 mg%), and then lactic and malic acid contents were markedly changed according to capsulation of meju. Lightness value(L) of Hunter color index was much higher in BCM than in SCM. Fatty acid composition of CM was not different as compared to control meju. Total free amino acid content in BCM(1039.70 mg%) was 4.4 times and 2.4 times higher than that in control meju(236.45 mg%) and SCM(556.07 mg%), respectively.

Implantable Flexible Sensor for Telemetrical Real-Time Blood Pressure Monitoring using Polymer/Metal Multilayer Processing Technique (폴리머/ 금속 다층 공정 기술을 이용한 실시간 혈압 모니터링을 위한 유연한 생체 삽입형 센서)

  • Lim Chang-Hyun;Kim Yong-Jun;Yoon Young-Ro;Yoon Hyoung-Ro;Shin Tae-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.599-604
    • /
    • 2004
  • Implantable flexible sensor using polymer/metal multilayer processing technique for telemetrical real-time blood pressure monitoring is presented. The realized sensor is mechanically flexible, which can be less invasively implanted and attached on the outside of blood vessel to monitor the variation of blood pressure. Therefore, unlike conventional detecting methods which install sensor on the inside of vessel, the suggested monitoring method can monitor the relative blood pressure without injuring blood vessel. The major factor of sudden death of adults is a disease of artery like angina pectoris and myocardial infarction. A disease of circulatory system resulted from vessel occlusion by plaque can be preventable and treatable early through continuous blood pressure monitoring. The procedure of suggested new method for monitoring variation of blood pressure is as follows. First, integrated sensor is attached to the outer wall of blood vessel. Second, it detects mechanical contraction and expansion of blood vessel. And then, reader antenna recognizes it using telemetrical method as the relative variation of blood pressure. There are not any active devices in the sensor system; therefore, the transmission of energy and signal depends on the principle of mutual inductance between internal antenna of LC resonator and external antenna of reader. To confirm the feasibility of the sensing mechanism, in vitro experiment using silicone rubber tubing and blood is practiced. First of all, pressure is applied to the silicone tubing which is filled by blood. Then the shift of resonant frequency with the change of applied pressure is measured. The frequency of 2.4 MHz is varied while the applied pressure is changed from 0 to 213.3 kPa. Therefore, the sensitivity of implantable blood pressure is 11.25 kHz/kPa.