• Title/Summary/Keyword: 수체

Search Result 487, Processing Time 0.038 seconds

Pytotoxicity by Continuous Spraying of Fruit Fire Blight Disinfectant During Growing Season of Apple and Pear (과수 화상병 방제약제의 사과·배 생육기 연용 살포에 의한 약해)

  • Se Hee Kim;Song-Hee Ryu;Byeonghyeon Yun;Kang Hee Cho;Sang-Yun Cho;Jung Gwan Park
    • Korean Journal of Plant Resources
    • /
    • v.36 no.1
    • /
    • pp.100-106
    • /
    • 2023
  • In order to control the fire blight disease, all plants within the radius of the diseased orchard were removed in the early stage of the outbreak, or antibiotics control was performed for prevention. Since the beginning of antibiotics use on plants, the potential for development of resistance to antibiotics by the plant pathogen and unintended detrimental effects on the fruit trees and environment has become a problem. The purpose of this study is to determine the degree of phytotoxicity to fruit trees caused by excessive spraying of the fire blight disease disinfectant and to establish basic data for safe disinfectant guide. We analyzed whether damage to the fruit tree and the maximum residual limit of fruit was exceeded when three kinds of the fire blight disease disinfectants were continuously sprayed in excess of the number of safe use during the growing season. There was no phytotoxicity in apple 'Fuji' and pear 'Niitaka', and oxolinic acid was detected beyond the limit of quantitation in 'Fuji' grown without a bag, and the other disinfectants were detected below the maximum residue limit. When these disinfectants are continuously sprayed in excess of the number of safe, phytotoxicity may remain on the fruit. Therefore, it is necessary to observe the prescribed dilution factor and observe the safe frequency and the timing of use.

Prediction System for Turbidity Exclusion in Imha Reservoir (임하호 탁수 대응을 위한 예측 시스템)

  • Jeong, Seokil;Choi, Hyun Gu;Kim, Hwa Yeong;Lim, Tae Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.487-487
    • /
    • 2021
  • 탁수는 유기물 또는 무기물이 유입되면서 빛의 투과성이 낮아진 수체를 의미한다. 탁수가 발생하게 되면 어류의 폐사, 정수처리 비용의 증가 및 경관의 변화로 인한 피해가 발생하게 된다. 국내에서는 홍수기 또는 태풍 시 유역의 토사가 저수지 상류에서 유입하여 호내의 탁수를 발생시키는 경우가 있는데, 특히 낙동강 유역의 임하호에서 빈번하게 고탁수가 발생하여 왔다. 본 연구에서는 임하호에서 탁수 발생 시 신속 배제를 위한 수치적인 예측 시스템을 소개하고자 한다. 저수지 탁수관리의 기본개념은 용수공급능력을 고려한 고탁수의 신속한 배제이다. 이는 선제적 의사결정을 요구하므로, 지류에서 탁수가 발생한 즉시 향후 상황에 대한 예측이 필요하다. 이러한 예측을 위해 유역관리처는 3단계의 수치해석을 수행한다. 첫 번째는 유역 상류에서 탁수가 감지되었을 때, 호 내 탁수의 분포를 예측하는 것이다. 수심 및 수평방향의 탁수 분포에 대한 상세한 결과가 도출되어야 하기에, 3차원 수치해석 프로그램인 AEM3D를 이용한다. 이때, 과거 고탁수 유입에 대한 자료를 기반으로 산정된 매개변수가 적용된다. 두 번째는 예측된 호내 분포를 초기조건으로 댐 방류량 및 취수탑 위치(선택배제)에 따른 탁수 배제 수치해석을 수행하게 된다. 다양하고 많은 case에 대한 신속한 모의 및 3달 이상의 장기간 예측을 요구하므로, 2차원 수치모델인 CE-QUAL-W2를 활용한다. 이 단계에서 수자원의 안정적 공급이 가능한 범위 내에서 효과적인 탁수 배제 방류 방법 등이 결정되며, 방류 탁도가 예측된다. 세 번째 단계는 방류탁도를 경계조건으로 하여 하류 하천(반변천~내성천 합류 전)의 탁도를 예측하는 것이다. 하천의 탁도 예측은 국내뿐만 아니라 국외에서도 그 사례를 찾아보기가 쉽지 않은데, 이는 중소형의 지류에 대한 입력자료가 충분하지 않고 불확실성이 높기 때문이다. 이에 과거 10여 년의 data를 이용한 회귀분석을 통해 탁수 발생물질(SS)-부유사-유량과의 관계를 도출하고, 2차원 하천모델(EFDC)을 이용하여 수심 평균 탁도를 예측하게 된다. 이러한 세 단계의 예측은 탁수가 호내로 유입됨에 따라 반복되고, 점차 예측 정확도가 향상되게 된다. 세 단계의 과정을 통한 임하호 탁수의 조기 배제는 현재 적지 않은 효과를 거두고 있다고 판단된다. 그러나 탁수를 발생시키는 현탁물질의 종류는 매번 일정하지 않기 때문에, 이러한 예측 시스템에 정확도에 영향을 줄 수 있으므로, 여러 상황을 고려한 딥러닝을 도입하여 탁수 물질에 대한 정보를 예측한다면 보다 합리적인 의사결정 지원 도구가 될 수 있을 것이다.

  • PDF

Comparative analysis of water surface spectral characteristics based on hyperspectral images for chlorophyll-a estimation in Namyang estuarine reservoir and Baekje weir (남양호와 백제보의 Chlorophyll-a 산정을 위한 초분광 영상기반 수체분광특성 비교 분석)

  • Jang, Wonjin;Kim, Jinuk;Kim, Jinhwi;Nam, Guisook;Kang, Euetae;Park, Yongeun;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.91-101
    • /
    • 2023
  • In this study, we estimated the concentration of chlorophyll-a (Chl-a) using hyperspectral water surface reflectance in an inland weir (Baekjae weir) and estuarine reservoir (Namyang Reservoir) for monitoring the occurrence of algae in freshwater in South Korea. The hyperspectral reflectance was measured by aircraft in Baekjae Weir (BJW) from 2016 to 2017, and a drone in Namyang Reservoir (NYR) from 2020 to 2021. The 30 reflectance bands (BJW: 400-530, 620-680, 710-730, 760-790 nm, NYR: 400-430, 655-680, 740-800 nm) that were highly related to Chl-a concentration were selected using permutation importance. Artificial neural network based Chl-a estimation model was developed using the selected reflectance in both water bodies. And the performance of the model was evaluated with the coefficient of determination (R2), the root mean square error (RMSE), and the mean absolute error (MAE). The performance evaluation results of the Chl-a estimation model for each watershed was R2: 0.63, 0.82, RMSE: 9.67, 6.99, and MAE: 11.25, 8.48, respectively. The developed Chl-a model of this study may be used as foundation tool for the optimal management of freshwater algal blooms in the future.

Estimation of Storage Capacity using Topographical Shape of Sand-bar and High Resolution Image in Urban Stream (도시하천의 지형태 자료와 영상정보를 이용한 수체적 시험평가)

  • Lee, Hyun Seok;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.445-450
    • /
    • 2008
  • Recently, environmental and ecological approaches is in progress in urban stream, especially the guarantee of instream flow becomes very important. In this paper, it is suggested that water volume estimation method utilizing the topographical shape data obtained by field investigation and satellite image to manage the urban stream efficiently. The data obtained at Gap River is the study area are analysed and those results are as belows. First, surveying to investigate topographic shape characteristics of urban stream is carried out. In details, the gradient characteristics from water surface to bottom in case of sand area and in case of grass area are 0.013 and 0.065 respectively. In conclusion, the gradient characteristic of grass area is five times bigger than that of sand area. Besides, IKONOS image is classified by spectrum analysis and Minimum Distance Method and the sand area extraction method by the generalization method as Median filter is suggested to calculate water volume. Finally, mapping process on the sand area extracted from the topographical shape field data in river and satellite images is carried out by the GIS spatial analysis. And on the assumption that the water level was 1m at that time when satellite image was taken, the water volume was $225,258m^3$. It is clarified that the effect of water volume improvement was about 10.5% in comparison with water volume that had no consideration on the gradient characteristics of sand-bar.

Remote Sensing based Algae Monitoring in Dams using High-resolution Satellite Image and Machine Learning (고해상도 위성영상과 머신러닝을 활용한 녹조 모니터링 기법 연구)

  • Jung, Jiyoung;Jang, Hyeon June;Kim, Sung Hoon;Choi, Young Don;Yi, Hye-Suk;Choi, Sunghwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.42-42
    • /
    • 2022
  • 지금까지도 유역에서의 녹조 모니터링은 현장채수를 통한 점 단위 모니터링에 크게 의존하고 있어 기후, 유속, 수온조건 등에 따라 수체에 광범위하게 발생하는 녹조를 효율적으로 모니터링하고 대응하기에는 어려운 점들이 있어왔다. 또한, 그동안 제한된 관측 데이터로 인해 현장 측정된 실측 데이터 보다는 녹조와 관련이 높은 NDVI, FGAI, SEI 등의 파생적인 지수를 산정하여 원격탐사자료와 매핑하는 방식의 분석연구 등이 선행되었다. 본 연구는 녹조의 모니터링시 정확도와 효율성을 향상을 목표로 하여, 우선은 녹조 측정장비를 활용, 7000개 이상의 녹조 관측 데이터를 확보하였으며, 이를 바탕으로 동기간의 고해상도 위성 자료와 실측자료를 매핑하기 위해 다양한Machine Learning기법을 적용함으로써 그 효과성을 검토하고자 하였다. 연구대상지는 낙동강 내성천 상류에 위치한 영주댐 유역으로서 데이터 수집단계에서는 면단위 현장(in-situ) 관측을 위해 2020년 2~9월까지 4회에 걸쳐 7291개의 녹조를 측정하고, 동일 시간 및 공간의 Sentinel-2자료 중 Band 1~12까지 총 13개(Band 8은 8과 8A로 2개)의 분광특성자료를 추출하였다. 다음으로 Machine Learning 분석기법의 적용을 위해 algae_monitoring Python library를 구축하였다. 개발된 library는 1) Training Set과 Test Set의 구분을 위한 Data 준비단계, 2) Random Forest, Gradient Boosting Regression, XGBoosting 알고리즘 중 선택하여 적용할 수 있는 모델적용단계, 3) 모델적용결과를 확인하는 Performance test단계(R2, MSE, MAE, RMSE, NSE, KGE 등), 4) 모델결과의 Visualization단계, 5) 선정된 모델을 활용 위성자료를 녹조값으로 변환하는 적용단계로 구분하여 영주댐뿐만 아니라 다양한 유역에 범용적으로 적용할 수 있도록 구성하였다. 본 연구의 사례에서는 Sentinel-2위성의 12개 밴드, 기상자료(대기온도, 구름비율) 총 14개자료를 활용하여 Machine Learning기법 중 Random Forest를 적용하였을 경우에, 전반적으로 가장 높은 적합도를 나타내었으며, 적용결과 Test Set을 기준으로 NSE(Nash Sutcliffe Efficiency)가 0.96(Training Set의 경우에는 0.99) 수준의 성능을 나타내어, 광역적인 위성자료와 충분히 확보된 현장실측 자료간의 데이터 학습을 통해서 조류 모니터링 분석의 효율성이 획기적으로 증대될 수 있음을 확인하였다.

  • PDF

Modeling the Effect of Intake Depth on the Thermal Stratification and Outflow Water Temperature of Hapcheon Reservoir (취수 수심이 합천호의 수온성층과 방류 수온에 미치는 영향 모델링)

  • Sun-A Chong;Hye-Ji Kim;Hye-Suk Yi
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.473-487
    • /
    • 2023
  • Korea's multi-purpose dams, which were constructed in the 1970s and 1980s, have a single outlet located near the bottom for hydropower generation. Problems such as freezing damage to crops due to cold water discharge and an increase the foggy days have been raised downstream of some dams. In this study, we analyzed the effect of water intake depth on the reservoir's water temperature stratification structure and outflow temperature targeting Hapcheon Reservoir, where hypolimnetic withdrawal is drawn via a fixed depth outlet. Using AEM3D, a three-dimensional hydrodynamic water quality model, the vertical water temperature distribution of Hapcheon Reservoir was reproduced and the seasonal water temperature stratification structure was analyzed. Simulation periods were wet and dry year to compare and analyze changes in water temperature stratification according to hydrological conditions. In addition, by applying the intake depth change scenario, the effect of water intake depth on the thermal structure was analyzed. As a result of the simulation, it was analyzed that if the hypolimnetic withdrawal is changed to epilimnetic withdrawal, the formation location of the thermocline will decrease by 6.5 m in the wet year and 6.8 m in the dry year, resulting in a shallower water depth. Additionally, the water stability indices, Schmidt Stability Index (SSI) and Buoyancy frequency (N2), were found to increase, resulting in an increase in thermal stratification strength. Changing higher withdrawal elevations, the annual average discharge water temperature increases by 3.5℃ in the wet year and by 5.0℃ in the dry year, which reduces the influence of the downstream river. However, the volume of the low-water temperature layer and the strength of the water temperature stratification within the lake increase, so the water intake depth is a major factor in dam operation for future water quality management.

Mapping Topography Change via Multi-Temporal Sentinel-1 Pixel-Frequency Approach on Incheon River Estuary Wetland, Gochang, Korea (다중시기 Sentinel-1 픽셀-빈도 기법을 통한 고창 인천강 하구 습지의 지형 변화 매핑)

  • Won-Kyung Baek;Moung-Jin Lee;Ha-Eun Yu;Jeong-Cheol Kim;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1747-1761
    • /
    • 2023
  • Wetlands, defined as lands periodically inundated or exposed during the year, are crucial for sustaining biodiversity and filtering environmental pollutants. The importance of mapping and monitoring their topographical changes is therefore paramount. This study focuses on the topographical variations at the Incheon River estuary wetland post-restoration, noting a lack of adequate prior measurements. Using a multi-temporal Sentinel-1 dataset from October 2014 to March 2023, we mapped long-term variations in water bodies and detected topographical change anomalies using a pixel-frequency approach. Our analysis, based on 196 Sentinel-1 acquisitions from an ascending orbit, revealed significant topography changes. Since 2020, employing the pixel-frequency technique, we observed area increases of +0.0195, 0.0016, 0.0075, and 0.0163 km2 in water level sections at depths of 2-3 m, 1-2 m, 0-1 m, and less than 0 m, respectively. These findings underscore the effectiveness of the wetland restoration efforts in the area.

Assessment of temperature-dependent water quality reaction coefficients and monthly variability of residual chlorine in water distribution networks (수온 변화에 따른 상수관망 내 수질반응계수 추정 및 월별 잔류염소농도 분포 변화 분석)

  • Jeong, Gimoon;Choi, Taeho;Kang, Doosun;Lee, Juwon;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.705-720
    • /
    • 2023
  • In South Korea, ongoing incidents related to drinking water quality have eroded consumer trust. Specifically, beyond quality incidents, there have been complaints about taste, odor, and other issues stemming from the presence of chlorine. To address this, water service operators are employing various management strategies from both temporal (scheduling) and spatial (rechlorination) perspectives to ensure uniform and safe distribution of chlorine residuals. In this study, we focus on the optimal monthly management of chlorine residuals, based on water distribution network analysis. Water quality reaction coefficients, including bulk fluid and wall reaction coefficients, were estimated through lab-scale tests and EPANET water quality simulations, respectively, accounting for temperature variations in a large-scale water distribution network. Utilizing these estimated coefficients, we examined the monthly variations in chlorine residual distribution under different chlorine injection conditions. The results indicate that the efficient concentration for chlorine injection, which satisfies the residual chlorine limit range, varies with temperature changes. Consequently, it is imperative to establish a specific and quantitative chlorine injection plan that considers the accurate spatial distribution of monthly chlorine residuals.

Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number (담수 유해남조 세포수·대사물질 농도 예측을 위한 머신러닝과 딥러닝 모델링 연구동향: 알고리즘, 입력변수 및 학습 데이터 수 비교)

  • Yongeun Park;Jin Hwi Kim;Hankyu Lee;Seohyun Byeon;Soon-Jin Hwang;Jae-Ki Shin
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.268-279
    • /
    • 2023
  • Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier's abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.

The Limnological Survey of a Coastal Lagoon in Korea (3): Lake Hwajinpo (동해안 석호의 육수학적 조사 (3): 화진포호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.12-25
    • /
    • 2004
  • Physicochemical parameters, plankton biomass, and sediment were surveyed from 1998 to 2000 at two months interval in a eutrophic coastal lagoon(Lake Hwajinpo, Korea). The lake is separated from the sea by a narrow sand dune. Littoral zone is well vegetated with leafing-leaved aquatic plants. The lake basin is divided into two subbasins by a shallow sill. It has intrusion of seawater by permeation and stormy waves. Stable chemoclines are formed by salinity difference at 1m depth all the year round. DO was often very low (< 1 mg$O_2\;L^{-1}$) at hypolimnion. Temperature inversions were observed in November. Nitrate and ammonium concentrations were very low(< (1.1 mgN $L^{-1}$), even though TN was usually 2.0 ${\sim}$ 3.5 mgN $L^{-1}$. TN/TP was generally lower than the Redfield ratio. Transparency was 0.2 ${\sim}$ 1.7 m, and COD, TP, and TN of sediment were 3.1 ${\sim}$ 40.3 mg$O_2\;g^{-1}$, 0.91 ${\sim}$ 1.39 mgP $g^{-1}$, and 0.34 ${\sim}$ 3.07 mgN $g^{-1}$, respectively. Phytoplankton chlorophyll- a concentrations were mostly over 40 mg $m^{-3}$. Two basins showed different phytoplankton communities with Oscillatoria so., Trachelomonas sp., Schizochlamys gelatinosa, and Anabaena spiroides dominant in South basin, and with Trachelomons sp., Schroederia so., schizochlamys gelatinosa, and Trachelomonas sp. dominant in the North basin. The seasonal succession of phytoplankton was very fast, possibly due to sudden changes in physical conditions, such as wind, turbidity, salinity and light.