• Title/Summary/Keyword: 수질 및 유량자료

Search Result 362, Processing Time 0.028 seconds

Estimation of Soil Loss into Sap-Gyo Reservoir Watershed using GIS and RUSLE (GIS와 RUSLE 기법을 이용한 삽교호유역의 토사 유실량 산정)

  • Kim, Man-Sik;Jung, Seung-Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • Prediction of exact soil loss yield has as important engineering meaning as prediction of exact flow measurement in a stream. The quantity of soil loss in a stream should be considered in planning and management of water resources and water quality such as design and maintenace of hydraulic structures : dams, weirs and seawalls, channel improvement, channel stabilization, flood control, design and operation of reservoirs and design of harbors. In this study, the soil loss of Sap-gyo reservoir watershed is simulated and estimated by RUSLE model which is generally used in the estimation of soil loss. The parameters of RUSLE model are selected and estimated using slope map, landuse map and soil map by GIS. These parameters are applied to RUSLE's estimating program. And soil loss under probability rainfall in different frequencies are estimated by recent 30 years of rainfall data of Sap-gyo reservoir watershed.

  • PDF

Development of a Decision Making Model for Efficient Rehabilitation of Sewer System (효율적인 하수관거 개량을 위한 의사결정모형의 개발)

  • Lee, Jung-Ho;Jun, Hwan-Don;Joo, Jin-Gul;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.127-135
    • /
    • 2008
  • The objective of sewer rehabilitation is to improve its function while eliminating inflow/infiltration (I/I) and insufficient carrying capacity (ICC). Such rehabilitation efforts, however, have not been particularly successful due to a lack of sewer data and unsystematic field practices. The present study aimed to solve these problems by developing a decision making model consisting of two models: the rehabilitation weighting model (RWM) and the rehabilitation priority model (RPM). In RWM, the I/I of each pipe in a drainage district is estimated according to various defects, with each defect given an individual weighting factor using an analytic hierarchy process (AHP). RPM determines the optimal rehabilitation priority (ORP) using a genetic algorithm (GA). The developed models can be used to overcome the problems associated with unsystematic practices and, in practice, as a decision making tool for urban sewer system rehabilitation.

Modification of Hydro-BEAM Model for Flood Discharge Analysis (홍수유출해석을 위한 Hydro-BEAM모형의 개선)

  • Park, Jin-Hyeog;Yun, Ji-Heun;Chong, Koo-Yol;Sung, Young-Du
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2179-2183
    • /
    • 2008
  • 지금까지 분포형 모형 개발에 대한 많은 노력이 있음에도 불구하고 여러 제약사항들에 의해 잠재력을 보여주는 정도로 활용되어 왔으나, 최근 급속도로 발전하는 컴퓨터의 계산능력, DEM 등 디지털정보의 구축이 진행되어 오고 있고, GIS 및 인공위성 영상기법의 발달로 공간적인 비균질성을 고려하여 유출과정에서 운동역학적인 이론을 기반으로 물의 흐름을 수리학적으로 추적해 나가는 물리적기반의 분포형 유출모형의 활용도가 높아지고 있다. 본 모형개발에 있어 이론적 배경이 된 모형은 1998년부터 일본 교토대학 방재연구소 코지리 연구실에서 개발 중인 Hydro-BEAM으로 유역 물순환의 건전성을 평가하기 위하여 장기간의 유역 내 유량, 수질을 시계열 및 공간적으로 파악하여 유역의 영향평가를 위해 개발된 물리적 기반의 격자구조를 가진 분포형 장기유출 모형이다. 유출량 계산은 유역내 수평 유출량산정 모듈로서 평면 분포형의 격자형을, 연직 분포형으로는 $A{\sim}B$층의 수평유출량은 하천으로 유입하고, C층은 하천유량에 영향을 미치지 않는 지하수층으로 가정하는 다층모형을 이용해서 A층, 지표 및 하도흐름은 운동파 법(kinematic wave)으로, $B{\sim}C$층의 유출량은 선형저류법으로 계산하는 모형이다. 본 연구에서는 격자흐름방향을 4방향에서 8방향으로 개선하였고, 모형의 각종 수문매개변수들을 GIS와 연계하여 직접 입력할 수 있도록 하였으며, 물리적기반의 침투과정을 모의할 수 있도록 Green & Ampt모듈을 추가하고, 향후 레이더 강우 및 수치예보강우의 홍수유출예측을 염두에 두고 격자강우량을 활용할 수 있도록 하는 등 홍수유출해석을 위한 분포형 강우-유출모형으로 개선 하였고, 이를 남강댐유역에 적용해 봄으로써 모형의 적용성을 검토해 보고자 하였다. 홍수기동안의 지표흐름과 지표하 흐름의 시간적 변화와 공간적 분포를 모의할 수 있었으며, 전처리과정으로서 ArcGIS 혹은 ArcView등의 GIS 프로그램을 이용하여 모형에 필요한 ASCII형태의 입력 매개 변수 자료들을 가공하였다. 또한 후처리과정으로서 모형의 수행결과인 유역내의 유출량 분포 등을 GIS상에서 나타낼 수 있도록 ASCII형태로 출력하도록 구성하였다. 남강댐유역을 대상으로 유역을 500m의 정방형 격자로 분할하고 수계망을 통하여 유역 출구까지 운동파이론에 의해 추적 계산하였으며, 수문곡선 비교결과 재현성 높은 결과를 보여주었다. 모형의 정확성 및 실용성에 대한 보다 정확한 평가를 위해서는 향후 다양한 강우 사상 혹은 다양한 크기의 유역에 대한 유출량의 재현성 및 매개변수 등에 검증이 이루어져야 할 것이다.

  • PDF

A Study on the Runoff Characteristics and Water Quality Management of Seung-Gi Stream Area (승기천 유역의 오염물 유출특성 및 수질관리방안 연구)

  • Seo, Hyung-Joon;Chung, Sang-Won;Park, Mi-Ok;Lee, Byung-Ryul
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.251-263
    • /
    • 2001
  • This study was conducted to provide a basic information for recovery plan of Seung-Gi Stream which is a major stream of Incheon metropolitan area. Source and characteristics of pollutants were analyzed and studied. Samples were taken 10 rounds in 5 sections in Seung-Gi stream. Annual pollutants loads and sectional characteristics of pollutants loads were investigated regarding flow rate, pH, DO, SS, $BOD_5$, $COD_{Cr}$, T-P, TKN and concentrations of Zn, Cd, Cu, Cr atoms which enter into Seung-Gi stream during rainy and dry season respectively. As one came close to the Nam-Dong Industrial Complex, sectional discharge loads were heavy and water quality was failed to meet the standard by "Environmental Standard of River Quality". As a result, heavy load of pollutants in Seung-Gi stream was considered to influence negatively the sea water quality of Incheon. Solution plans to solve problems are as follows. First, circulation of treated water at Seung-Gi WWTP(Wastewater Treatment Plant) and retreated water by URC(ultra rapid coagulation) process treat with that. Second, sewage and wastewater is gathered, make it disposed. After then, we circulate treated water. If solution plans be applied, we can predict water quality. Then we could grope for how make to recovery role of Seung-Gi stream as stream.

  • PDF

Biological Stream Health and Physico-chemical Characteristics in the Keum-Ho River Watershed (금호강 수계에서 생물학적 하천 건강도 및 이화학적 특성)

  • Kwon, Young-Soo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.145-156
    • /
    • 2006
  • The objective of this study was to evaluate biological health conditions and physicochemical status using multi-metric models at five sites of the Keum-Ho River during August 2004 and June 2005. The research approach was based on a qualitative habitat evaluation index (QHEI), index of biological integrity (IBI) using fish assemblage, and long-term chemical data (1995 ${\sim}$ 2004), which was obtained from the Ministry of Environment, Korea. For the biological health assessments, regional model of the IBI in Korea (An,2003), was applied for this study. Mean IBI in the river was 30 and varied from 23 to 48 depending on the sampling sites. The river health was judged to be "fair condition", according to the stream health criteria of US EPA (1993) and Barbour et al. (1999). According to the analysis of the chemical water quality data of the river, BOD, COD, conductivity, TP, TN, and TSS largely varied epending on the sampling sites, seasons and years. Variabilities of some parameters including BOD, COD, TP, TN, and conductivity were greater in the downstream than in the upstream reach. This phenomenon was evident in the dilution by the rain during the monsoon. This indicates that precipitation is a very important factor of the chemical variations of water quality. Community analyses showed that species diversity index was highest (H=0.78) in the site 1, while community dominance index was highest in the site 3, where Opsariichthys uncirostris largely dominated. In contrast, the proportions of omnivore and tolerant species were greater in the downstream reach, than in the upstream reach. Overall, this study suggests that some sites in the downstream reach may need to restore the aquatic ecosystem for better biological health.

Analysis of the mixing effect of the confluence by the difference in water temperature between the main stream and the tributary (본류와 지류의 수온 차에 의한 합류부 혼합 양상 분석)

  • Ahn, Seol Ha;Lee, Chang Hyun;Kim, Kyung Dong;Kim, Dong Su;Ryu, Si Wan;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.103-113
    • /
    • 2023
  • The river confluence is a section in which two rivers with different topographical and hyrodynamic characteristics are combined into one, and it is a section in which rapid flow, inflow of sediments, and hydrological topographic changes occur. In the confluence section, the flow of fluid occurs due to the difference in density due to the type of material or temperature difference, which is called a density flow. It is necessary to accurately measure and observe the confluence section including a certain section of the main stream and tributaries in order to understand the mixing behavior of the water body caused by the density difference. A comprehensive analysis of this water mixture can be obtained by obtaining flow field and flow rate information, but there is a limit to understanding the mixing of water bodies with different physical properties and water quality characteristics of rivers flowing with stratigraphic flow. Therefore, this study attempts to grasp the density flow through the water temperature distribution in the confluence section. Among the extensive data of the river, vertical data and water surface data were acquired, and through this, the stratification phenomenon of the confluence was to be confirmed. It was intended to analyze the mixed pattern of the confluence by analyzing the water mixing pattern according to the water temperature difference using the vertical data obtained by measuring the repair volume by installing the ADCP on the side of the boat and measuring the real-time concentration using YSI. This study can supplement the analysis results of the existing water quality measurement in two dimensions. Based on the comparative analysis, it will be used to investigate the current status of stratified sections in the water layer and identify the mixing characteristics of the downstream section of the river.

Parameter estimations to improve urban planning area runoff prediction accuracy using Stormwater Management Model (SWMM) (SWMM을 이용한 도시계획지역 유출량 예측 정확도 향상을 위한 매개변수 산정)

  • Koo, Young Min;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.303-313
    • /
    • 2017
  • In environmental impact assessments for large urban development projects, the Korean government requires analysis of stormwater runoff before, during and after the projects. Though hydrological models are widely used to analyze and prepare for surface runoff during storm events, accuracy of the predicted results have been in question due to limited amount of field data for model calibrations. Intensive field measurements have been made for storm events between July 2015 and July 2016 at a sub-basin of the Gwanpyung-cheon, Daejeon, Republic of Korea using an automatic monitoring system and also additional manual measurements. Continuous precipitation and surface runoff data used for utilization of SWMM model to predict surface runoff during storm events with improved accuracy. The optimal values for Manning's roughness coefficient and values for depression storage were estimated for pervious and impervious surfaces using three representative infiltration methods; the Curve Number Methods, the Horton's Method and the Green-Ampt Methods. The results of the research is expected to be used more efficiently for urban development projects in Korea.

A Study on the Characteristic of Pollutants of Water Quality and Sediments in Gul-po Stream Basin (굴포천 유역 내 수질 및 퇴적물의 오염물질 특성 파악에 관한 연구)

  • Ahn, Tae-Woong;Jung, Jae-Hoon;Kim, Tae-Hoon;Kim, Sea-Won;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.495-503
    • /
    • 2012
  • The water quality of Gul-po Stream, the subject of this study, has been deteriorating because of the inflow of domestic sewage and the industrial wastewater due to industrialization and the problems relating to the structure of river including slow flow rate and the covering of river. In particular, the domestic sewage from small-medium sized factories by the river and large-scale industrial complex by the upper and middle streams of the river, and the domestic sewage from increasing population due to the regional development are the main pollution sources. Thus, this study aims to survey the water quality and the sediment affecting Gul-po Stream; monitor the state of pollution in water body; assess the yield of sediment and investigate the water quality of river and the problems arising from sediment; and then suggest reasonable ways to improve the situation. The findings from surveying pollution load shows the discharge increases up to average 72.8 times from the upper stream to the downstream of Gul-po Stream, and pollution load increases up to: SS 111 times, BOD 150 times, COD 145 times, the nutrient T-N 222 times and T-P 312 times on an average basis. As for the pollution concentration range, ignition loss is 1.29~12.43%; COD is 4,015~37,547 kg/day; T-N and T-P 94.8~352.5 kg/day and 81.8~372.3 kg/day, respectively. As for the releasing rate of sediment, T-N is -14.46~$156.61mg/m^2/day$; T-P is -11.53~$26.10mg/m^2/day$, indicating the likelihood of internal contamination due to the elution of sediment. This study is expected to be used as basic data to manage Gul-po Stream basin.

Evaluation of Water Quality Characteristics on Tributaries of Dongjin River Watershed (동진강 유역내 하천의 특성별 영향평가)

  • Yun, Sun-Gang;Kim, Won-Il;Kim, Jin-Ho;Kim, Seon-Jong;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.243-247
    • /
    • 2002
  • Irrigation water quality along Donjin river watershed was monitored to find a possible pollutant, for maintaining water quality to achieve food safety through water quality preservation of river. As a pollution indicators, such as Biological Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Nitrogen(T-N), and Total Phosphate(T-P) in Dongjin river were examined from May to November in 2001. The results were as follows : The BOD level of Dongjin river ranged from 2.84 to 6.45 mg/L, which would be in a II$\sim$IV grade of the potable water criteria by Ministry of Environment. Averaged BOD level of downstream DJ6(After Jeongupcheon confluence) was 4.07 mg/L. The average COD level of Dongjin river ranged from 11.20 to 32.96 mg/L. COD level of DJ6 rapidly increased rapidly after the junction of Dongjin river and Jungupcheon because it showed the latter had relatively high pollution level. T-N content were significantly high in all sites of Dongjin river ranged through 4.16 to 5.84 mg/L. T-P examined high concentration than another thing point by 0.19 mg/L after Jeongupcheon confluence as BOD and COD. COD of main stream was expressed high concentration to dry season after rainy season. In case of T-P, pollution degree of dry season before rainy season appeared and examined that quality of water was worsened go by dry season after rainy season. The water quality of Dongjin river was deteriorated with inflow of Jungupcheon polluted by municipal and industrial sites near Jungup city.

Analysis of the Influence of Environmental Factors on the Density of Ecosystem-Disturbing Plant Sicyos angulatus - Centering on Miho Stream - (생태계교란 식물 가시박의 개체밀도에 대한 환경요인 영향 분석 - 금강수계 미호천을 중심으로 -)

  • Lee, Younggi;Kim, Hojoon;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.295-301
    • /
    • 2020
  • This research analyzed the relationship between environmental factors and the density of Sycios angulatus in the Miho Stream, Geum River water system in order to secure basic data for the control of the ecosystem-distrubing plant Sycios angulatus. As a result of the soil particle size analysis of Sycios angulatus habitat, it was found that the density of Sycios angulatus decreased as the silty and clay contents increased. Most of the Sycios angulatus habitats had high sandy and silt content, and low clay content of less than 2%. The increased flow rate reduced the density of Sicyos angulatus. This is because when the flow rate is increased, the Sicyos angulatus cannot grow due to the change in soil characteristics. Water quality plays a role in supplying nutrients when Sicyos angulatus are submerged. However, due to the change in soil characteristics during flooding, the density of Sicyos angulatus tended to decrease due to impaired growth. The Sicyos angulatus can be managed through artificial and natural techniques. The appropriate natural control technique is the creation of a natural waterway in the habitats to change the water contents.