• Title/Summary/Keyword: 수질 개선

Search Result 1,347, Processing Time 0.024 seconds

A Study on The Introduction of LID Prior Consultation for Small-Scale Development Projects - Focusing on Cost-Benefit Analysis - (소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 -)

  • Ji, Min-Kyu;Sagong, Hee;Joo, Yong-Jun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2020
  • Rapid urbanization has elevated the risk of urban flooding due to the increase in the impervious surface, causing environmental disasters and environmental pollution problems, such as lowering the groundwater level and increasing water pollution. In Korea, low impact development (LID) techniques have been introduced to minimize these environmental impacts and maintain the water cycle soundness. However, most small-scale development projects are in blind spots because there is no legal basis for rainfall runoff management. Small-scale development projects that increase the surface runoff of rainwater are required to mandate the application of LID facilities in accordance with the polluters' responsibility principle. Therefore, it is necessary to implement a preliminary consultation system for water cycle recovery. This study focuses on the cost-benefit analysis on the application of LID techniques for small-scale development projects. The scale of nationwide small-scale development projects used for cost-benefit analysis were defined as buildings with a land area of more than 1,000 ㎡ or a total floor area of 1,500 ㎡. As a result of analyzing the cost-benefits from the installation of LID facilities, they were found to be much lower than the economic standard value of 1. This might be due to the high cost of facilities compared to the scale of the project. However, considering the overall environmental value of improving the water environment and air quality by the installation of LID facilities and the publicity of reducing the operating cost of sewage treatment facilities, the introduction of a prior consultation for small-scale development projects is inevitable. In the future, institutional and financial support from local governments is required to improve the cost-benefits with the introduction of a prior consultation for small-scale development projects.

Study on improvement of USLE P factor considering topography and cultivation method (지형 및 경작 방법을 반영한 범용토양유실량 산정공식 보전관리 인자 개선 연구)

  • Sung, Yunsoo;Lee, Gwanjae;Lee, Gwanjae;Han, Jeongho;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.163-172
    • /
    • 2019
  • The USLE P factor is a factor that varies depending on how croplands are managed and cultivated. Previous studies tend to overestimate the amount of soil loss because the factor was estimated from the slope of the watershed rather than the estimate of each cultivated land. In addition, the accuracy of estimating the soil loss is decreasing due to the fact that the factor is calculated without considering various conditions of cultivated land defined by Wishmeier and Smith. In order to overcome these problems, the Ministry of Environment (MOE) has proposed to establish the topsoil notification and calculate the P factor according to the cultivation methods (e.g., tillage system, support practice). However, it is required to apply the conditions proposed in the United States to domestic circumstances as it is causing uncertainties. Thus, this study selected the watersheds where soil loss was serious (Haean, Jaun, Banbyeoncheon), measured the actual slopes and slope lengths, and examined the crop, tillage systems, and support practice for each cultivated land. The P factors were recalculated considering the actual conditions of cultivated land and compared to the factors proposed by the previous studies (MOE). As the result of the study, the P factors calculated based on the previous studies were 0.8 ~ 1.0 in three watersheds. On the other hand, it is confirmed that there is a significant difference between the factors notified by MOE and estimated by reflecting the topography and cultivation methods in this study. Therefore, it is considered that the research for developing the cultivation conditions to calculate the P factor suitable for the domestic environment should be continuously carried out.

A Study on the Cause and Improvement of the Red-Water Occurrence in Urban Stream (도심하천 내 적수발생 지점에 대한 원인검토 및 개선방안 연구)

  • Beomjin Eun;Jong Hwan Kim;Zi Yu Lin;Jeong Sook Heo;I Song Choi;Jong-Min Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.166-175
    • /
    • 2023
  • This study aims to identify the cause of the red-water occurrence (the phenomenon of water being red) that occurs at some points and sections of rivers in Yongin City. As a result of conducting a preliminary investigation, total three sites were selected as the investigation point as it was found that the red-water occurrence continued. As a result of the investigation, it is judged that the cause of the red-water in Yongin-city river is due to the soil color and iron content of the region. JPS, SBS, and JJS sites all showed that the color of soil is mainly consist of reddish brown and red-yellow. The average Fe concentration was 13.75 mg/L, 10.85 mg/L, and 1.31 mg/L, for each sites, and considering that the Fe concentration in general river water was less than 0.5 mg/L, it was confirmed that the concentration was quite high. At the JPS and JJS points, the red-water occurrence occurred mainly in stagnant places, which is believed to be strengthened by the reaction of organic and microorganisms. In the case of SBS, the wateris red, but as a result of observing the actual color, it is judged that the iron component deposited in the pipe causes an optical illusion with a deep red color. In addition, it is believed that the iron concentration can be reduced to the general river water concentration range by removing the particulate iron component through a decrease of more than 95% as a result of filtering with glass fiber filter with particulate iron. As a result of this study, it is necessary to manage the river to maintain the flow, and it is believed that the occurrence of red-water at the survey point can be alleviated through uptake action through planting and agglomeration precipitation and agglomeration filtration methods for particulate iron treatment.

Factors influencing the axes of anterior teeth during SWA on masse sliding retraction with orthodontic mini-implant anchorage: a finite element study (교정용 미니 임플랜트 고정원과 SWA on masse sliding retraction 시 전치부 치축 조절 요인에 관한 유한요소해석)

  • Jeong, Hye-Sim;Moon, Yoon-Shik;Cho, Young-Soo;Lim, Seung-Min;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.339-348
    • /
    • 2006
  • Objective: With development of the skeletal anchorage system, orthodontic mini-implant (OMI) assisted on masse sliding retraction has become part of general orthodontic treatment. But compared to the emphasis on successful anchorage preparation, the control of anterior teeth axis has not been emphasized enough. Methods: A 3-D finite element Base model of maxillary dental arch and a Lingual tipping model with lingually inclined anterior teeth were constructed. To evaluate factors influencing the axis of anterior teeth when OMI was used as anchorage, models were simulated with 2 mm or 5 mm retraction hooks and/or by the addition of 4 mm of compensating curve (CC) on the main archwire. The stress distribution on the roots and a 25000 times enlarged axis graph were evaluated. Results: Intrusive component of retraction force directed postero-superiorly from the 2 mm height hook did not reduce the lingual tipping of anterior teeth. When hook height was increased to 5 mm, lateral incisor showed crown-labial and root-lingual torque and uncontrolled tipping of the canine was increased.4 mm of CC added to the main archwire also induced crown-labial and root-lingual torque of the lateral incisor but uncontrolled tipping of the canine was decreased. Lingual tipping model showed very similar results compared with the Base model. Conclusion: The results of this study showed that height of the hook and compensating curve on the main archwire can influence the axis of anterior teeth. These data can be used as guidelines for clinical application.

Small-Scale Pond Effects on Reducing Pollutants Load from a Paddy Field (논의 양분유출 저감을 위한 저류지 효과)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Jung, Goo-Bok;Hong, Seong-Chang;Chae, Mi-Jin;Yun, Sun-Gang;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.355-358
    • /
    • 2013
  • BACKGROUND: Water-born pollution loads by agricultural non-point source (NPS) pollution are expected to become intensified due to ongoing precipitation change. Therefore, it is essential to develop a best management practice (BMP) that is suitable to agricultural environments in Korea. This study aimed to develop an environmental-friendly BMP to reduce NPS pollution load by agricultural activities. An eco-friendly way, small drainage pond, was suggested in this study to avoid direct drainage of agricultural runoffs and eventually reduce the amount of pollutants discharged into the surrounding aqua-environment. METHODS AND RESULTS: A small pond ($12m^2$) was constructed at the corner of a rice paddy field ($1,715m^2$) located in Suwon, Korea. Water was allowed to drain only via a small drainage pond. Sampling was repeatedly made at two locations, one from an entrance and the other from an exit of a pond, during the rice cultivation period (May to October, 2012). Generally, sampling was made only when runoff water drained through a pond, such as during and/or after rain (irrigation). The water quality analysis showed that all quality parameters (SS, $COD_{Mn}$, T-N, and T-P) were improved as water passed through the pond. The amount of runoff water was reduced by 96~100%. Suspended solids and COD concentrations was reduced by 79.3% and 45.6%, respectively. In case of T-N and T-P concentrations, the reduction rates were 52.2% and 60.5%, respectively and the amount of T-N and T-P were reduced by 16.3~73.0% and 15.4~70.1%, respectively. CONCLUSION(S): Our data implies that agricultural NPS pollution from rice paddy fields can be effectively managed when an appropriate drainage water management practice is imposed. In this paper, it was suggested that an installation of a small drainage pond can be effective to prevent not only the nutrient loss from rice fields but also pollutant discharge to surrounding water environments.

Investigation for Bed Stabilization Methods in the Upstream Channel of Haman Weir Using CCHE2D Model (CCHE2D 모형을 이용한 함안보 상류 하상안정화 방안 검토)

  • Jang, Eun Kyung;Ji, Un;Kwon, Yong Sung;Yeo, Woon Kwang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2211-2221
    • /
    • 2013
  • During the four river restoration project, several weirs were constructed in the four rivers to prevent drought and flood, to improve water quality, and to manage water resources. However, due to the weir construction, bed changes are produced in the upstream channel of installed weirs because the incoming flow velocity is reduced and sediment transport capacity is also lowered. Especially, since the Haman Weir is located in the lowest downstream section among newly installed weirs in Nakdong River, bed change and sedimentation problems are expected due to the mild slope and reduced velocity. Therefore, numerical simulation was performed to analyze flow and bed changes in the upstream channel of Haman Weir and to evaluate quantitatively sediment control methods for bed stabilization using CCHE2D model. As a result of flow and bed change simulation after installation of Haman Weir, the flow velocity at the initial condition was faster than the final bed condition with the specific simulation time and it was represented that the locations where bed changes were great were identical for all modeling conditions of flow discharge. In case of 4.5 m of water level lowered from 5.0 m of the management water level at Haman Weir for bed stabilization, the flow velocity was generally faster than the case of the management water level and the continuous erosion was developed at the most narrow channel section as the applied discharge and simulation period were increased. The channel width extension at the most narrow channel section was proposed in this study to prevent and stabilize continuos bed erosion. As a result of numerical analysis, there was no bed erosion after channel width extension and it was presented that the channel geometry extension was effective for bed stabilization at Haman Weir.

Craniofacial morphologic alteration induced by bone-targeted mutants of FGFR2 causing Apert and Crouzon syndrome (어퍼트 및 크루즌 증후군을 유발하는 골조직 특이성 FGFR2 돌연변이에 의한 두개안면 형태의 변화)

  • Lee, Kee-Joon;Nah, Hyun-Duck;Tjoa, Stephen T. J.;Park, Young-Chel;Baik, Hyoung-Seon;Yun, Tae-Min;Song, Jin-Wook
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.284-294
    • /
    • 2006
  • Objective: Activating mutations in the fibroblast growth factor receptor-2 (FGFR2) have been shown to cause syndromic craniosynostosis such as Apert and Crouzon syndromes. The purpose of this pilot study was to investigate the resultant phenotypes induced by the two distinctive bone-targeted gene constructs of FGFR2, Pro253Arg and Cys278Phe, corresponding to human Apert and Crouzon syndromes respectively. Methods: Wild type and a transgenic mouse model with normal FGFR2 were used as controls to examine the validity of the microinjection. Micro-CT and morphometric analysis on the skull revealed the following results. Results: Both Apert and Crouzon mutants of FGFR2 induced fusion of calvarial sutures and anteroposteriorly constricted facial dimension, with anterior crossbite present only in Apert mice. Apert mice differed from Crouzon mice and transgenic mice with normal FGFR2 in the anterior cranial base flexure and calvarial flexure angle which implies a possible difference in the pathogenesis of the two mutations. In contrast, the transgenic mice with normal FGFR2 displayed normal craniofacial phenotype. Conclusion: Apert and Crouzon mutations appear to lead to genotype-specific phenotypes, possibly causing the distinctive sites and sequence of synostosis in the calvaria and cranial base. The exact function of the altered FGFR2 at each suture needs further investigation.

Effect of Ozone and Anion Treatment for Livestock Drinking Water (오존$\cdot$음이온을 이용한 가축음용수 처리효과)

  • Choi H. C.;Lee D. S.;Kang H. S.;Kwon D. J.;Yoo Y. H.;Yeon K. Y.;Song J. I.;Yang C. B.;Kim Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.87-92
    • /
    • 2004
  • This research was carried out to investigate the effects of ozone and anion treatments in improving the quality of the drinking water far livestock. The drinking water was treated with an ozone concentration of 0.658 $\~$0.722 g/h and with anion of 3.27 $\~$ 6.17$\times$1,000,000 pieces/sec. With the ozone and anion treatments, the pH was significantly increased from a range of pH 6.38 $\~$ 7.14 to a range of pH 7.5 $\~$ 7.8(P<0.05). Also, with the ozone and anion treatments, the dissolved oxygen (DO) concentration in the drinking water was increased from a range of 2.0 $\~$ 3.5 mg/$\iota$ to 5.5 $\~$ 6.1 mg/$\iota$(P<0.05): the DO decreased in the control. The dissolved ozone was not increased in the beginning of the experiment, but was increased by 0.48$\~$0.56 mg/L after 48 h of the ozone and anion treatment. The colony numbers of Staphylococcus aureus, Salmonella enteritis, and Escherichia coli disappeared after one hour of ozone and anion treatment.

  • PDF

Cyanobacterial Development and Succession and Affecting Factors in a Eutrophic Reservoir (부영양 저수지에서 남조류의 발달과 천이 및 영향 요인)

  • Kim, Ho-Sub;Hwang, Soon-Jin;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • This study was conducted to evaluate the causes and effects of cyanobacterial development and succession in a shallow eutrophic reservoir from March 2003 to February 2004. Phytoplankton succession, sedimentation rate, and sediment composition were analyzed. Algal bioassay also was conducted with the consideration of light, water temperature and nutrients. Cyanobacteria dominated throughout the year, except for spring season (March${\sim}$April) in which diatoms and flagellates dominated. Total cell density increased in July and November when P loading through inflows was high. Oscillatoria spp. and Aphanizomenon sp. were dominant in May and June, respectively, but replaced with Microcystis spp. in July. Thereafter, Microcystis spp. sustained until December, and again shifted to Oscillatoria spp. and Aphanizomenon sp. The dominance of Oscillatoria spp. in May was accompanied with high TN/TP ratio and the increase of water temperature and light intensity. While the dominance of Microcystis spp. was related with relatively low TN/TP ratio, ranging from 46 to 13 (average: 27). The sedimentation rate was highest in March (0.6 m $day^{-1}$) when diatoms dominated. During the period of cyanobacterial dominance, relatively high sedimentation rate was observed in May (0.4 m $day^{-1}$) and October (0.36m $day^{-1}$). C/N ratio of the sediment ranged $6{\sim}8$. Inorganic P concentration in the pore water was low when DO concentration was < 2 mg $O_2$ $L^{-1}$ in the hypolimnion, reflecting the P release from the sediment. Cyanobacterial growth rate depended on phosphorus concentration and water temperature, and high P concentration compensated for the low temperature in the growth rate. Our results suggest that the potential of cyanobacterial development and substantiality in eutrophic reservoirs be high throughout the year, as being supplied with enough P, and emphasize the consideration of sediment man. agement for the water quality improvement and algal bloom control.

Effects of Macrophytes on Budget of Matters in Lake Paldang (대형수생식물이 팔당호의 물질 수지에 미치는 영향)

  • Park, Hae-Kyung;Jung, Dong-Il;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.85-92
    • /
    • 2006
  • To evaluate the primary production and nutrient uptake of macrophytes in Lake Paldang, this study investigate the vegetation areas of six dominant aquatic plants including Typha angustifolia, Zizania latifolia, Phragmites australis, Trapa japonica, Nelumbo nucifera and Savinia natans, and contents of carbon, nitrogen and phosphorus of each macrophyte. Total vegetation area of six dominant aquatic plants was 1.37 $km^2$. Among them, Typha angustifolia was the most wide-distributed species which occupied the 46.7% of total vegetation area. Littoral zone of South Han river had the largest vegetation area with 0.458 $km^2$, and North Han river, Kyungan river and confluence area in the order named. The results of the contents of carbon, nitrogen and phosphorus of macrophytes showed that the carbon contents of emergent macrophytes was higher than that of other life-forms. The nitrogen content of Salvinia natans, free-floating macrophyte was highest and that of Typha angustifolia, emergent macrophyte was lowest. The phosphorus content of Trapa japonica showed the highest content of phosphorus among six macrophytes and emergent macrophytes such as Zizania latifolia and Phragmites australis showed lower contents of phosphorus than other life-forms. The annual net primary production of macrophytes in Lake Paldang, 2004, was calculated as 758.4 ton C $yr^{-1}$ and the annual net nitrogen and phosphorus uptake of macrophyte was 16,921 kg $yr^{-1}$ and 1,841.0 kg P $yr^{-1}$ respectively. Comparing the total budget of organic carbon, nitrogen and phosphorus in Lake Paldang, the amount of primary production and nutrient uptake by macrophytes take a small portion in total budget implying macrophytes do not play an important role in budget of matters in river-type lake, Lake Paldang.