• Title/Summary/Keyword: 수직이격거리

Search Result 40, Processing Time 0.024 seconds

An experimental study on the behavior of tunnel excavated in a jointed mass by two-stage excavation (절리 지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적연구)

  • Park, Seung-Jun;Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.303-314
    • /
    • 2004
  • This study is intended to investigate the geotechnical behavior of jointed mass on tunnel excavation experimentally. Laboratory test were conducted in various conditions of distance from joint to tunnel and in-situ stress ratio ($K_0$). In case, the ground around the tunnel that has the joint angle $90^{\circ}$ generate the greatest influence in crown and far shoulder from joint. If the in-situ stress ratio is low, tangential stress of side wall that is opposite side of the joint is increased more than in crown. Otherwise in case, joint angle $45^{\circ}$, the generated compress stress is found out that left side of the tunnel of near the joint has influence on stability of the tunnel about 3 times than non-jointed rock.

  • PDF

Effect of the Design Parameters of Geothermal Heat Exchanger Design Length (설계변수가 수직밀폐형 지중열교환기 설계길이에 미치는 영향)

  • Min, Kyong-Chon;Choi, Jae-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.10-15
    • /
    • 2011
  • A ground loop heat exchanger for the ground source heat pump system is the core equipment determining the thermal performance and initial cost of the system The length and performance of the heat exchanger is dependent on the ground thermal conductivity, the operation hours, the ground loop diameter, the grout, the ground loop arrangement, the pipe placement and the design temperature. The result of this simulation shows that higher thermal conductivity of grouting materials leads to the decrease length of geothermal heat exchanger from 100.0 to 84.4%.

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.

An Analysis of Safety Zone Appropriateness of Urban Railway Box Structures by Adjacent Excavation Using Machine Learning Technique (머신러닝 기법을 적용한 인접굴착에 따른 도시철도 박스구조물의 안전영역 적정성 분석)

  • Jung-Youl Choi;Jae-Seung Lee;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.669-676
    • /
    • 2023
  • This study analyzed the relationship between major parameters and numerical analysis results according to various excavations conducted around the urban railway, application of machine learning techniques and verified the scope of influence of the adjacent excavation on the existing urban railway box structure and the appropriateness of the safety area. This study targeted the actual negotiated adjacent excavation works and box structures around the urban railway, and the analysis was conducted on the most representative two-line box structures. The analysis confirmed that the difference in depth of urban railway, excavation depth of adjacent excavation, and depth of underground water level are important parameters, and the difference in excavation depth of adjacent excavation is the parameter that affects the behavior of underground box structures and is an important requirement for setting safety areas. In particular, the deeper the depth of the adjacent excavation work, the greater the effect on the deflection of the underground box structure, and the horizontal separation distance, one of the important requirements for determining the management grade of the existing adjacent excavation work, is relatively small.

Experimental study on the behavior of retaining wall according to underground excavation distance (지하굴착 이격거리에 따른 흙막이벽체 거동에 대한 실험적 연구)

  • Park, Jong-Deok;Ahn, Chang-Kyun;Kim, Do-Youp;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • The changes in earth pressure and ground settlement due to the underground excavation nearby the existing retaining wall according to the separation distance between underground excavation and retaining wall, were studied experimentally. A soil tank having 160 cm in length and 120 cm in height, was manufactured to simulate the underground excavation like tunnel by using 5 separated bottom walls. The variation of earth pressure was measured according to the excavation stages by using 10 separated right walls simulating the retaining wall. The results showed that the earth pressure was changed by the lowering of first bottom wall(B1), however the earth pressure was not changed significantly by the lowering of third bottom wall(B3) since B3 had sufficient separation distance from retaining wall. Lowering of first bottom wall(B1) induced the decrease of earth pressure in lower part of retaining wall, on the contrary, lowering of first bottom wall(B1) induced the increase of earth pressure in middle part of retaining wall proving the arching effect.

Analysis of Mechanical Behavior of Existing Tunnel by the Construction of Shaft Nearby (근접한 수직구 건설에 따른 기존 터널의 역학적 거동 분석)

  • 이석원;조만섭;이성원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.109-122
    • /
    • 2003
  • In order to release the pressure fluctuations and micro-pressure wave induced by the entering of train into the small cross sectional tunnel, it has been reported that the construction of air shaft has more advantages with respect to economy and constructability than the enlargement of cross section of existing tunnel. The field monitorings and analytical studies were conducted simultaneously in this study to analyze the mechanical behavior of existing railway tunnel, new cross tunnel and new shaft by the construction of new shaft nearby. The results showed that the minimum distance from existing tunnel to new shaft which secures the stability of existing tunnel was found to be half diameter of existing tunnel. On the three dimensional mechanical behavior of existing tunnel by the construction of new shaft, the results from the analytical study and field monitoring had a similar trend. The analytical study and field monitoring results, however, produced somewhat different results on the mechanical behavior of new shaft itself. These conclusions induce that the analytical method which has been applied on the analyses of horizontal tunnel could not be applied in the same way on the analysis of vertical shaft.

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

The tidal effect of seawater/freshwater interface at the coastal aquifer of the Yongho Bay in Busan (부산 용호만 해안대수층에서 해수/담수 경계면의 조석효과)

  • Kim, Sung-Soo;Kang, Dong-Hwan;Kim, Byung-Woo;Kim, Tae-Yeong;Chung, Sang-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1960-1963
    • /
    • 2009
  • 본 연구에서는 부산시 용호만 해안대수층에서 전기전도도와 지하수위의 수직적인 관측을 통해, 조석에 의한 해수/담수 경계면의 변동을 산정하였다. 연구지역은 부경대학교 대연캠퍼스 기숙사 신축부지 주변 해안대수층이며, 응회질퇴적암과 안산암 및 안산암질 화산각력암 등으로 구성되어 있다. 관측공의 개발심도는 120 m, 케이싱심도는 19 m, 내경은 0.2 m, 관측공과 해안선의 이격거리는 180 m 정도이다. 전기전도도에 의해 산정된 밀도는 담수에서 997.58 $kg/m^3$, 해수에서 1020.36 $kg/m^3$ 이었다. 관측기간(2008년 8월 21일${\sim}$10월 18일) 동안 해수/담수 경계면의 변동 범위는 해수면 기준 -21.69${\sim}$-21.53 m 이었으며, 경계면의 평균 위치는 해수면 기준 -21.62 m 정도이었다. 해수/담수 경계면과 지하수위의 상관성은 매우 높게 나타났으며, 해안대수층 내 해수/담수 경계면의 변동은 조석의 일(고조, 저조) 및 보름(대조, 소조) 단위의 변동에 영향을 받고 있음이 확인되었다. 관측기간 동안 지하수위는 전반적으로 하강하는 경향을 나타내었으며, 이는 관측기간이 풍수기에서 갈수기로 전환되고 있었기 때문이다. 향후에는 지속적인 관측을 통해, 용호만 해안의 해수면 상승에 의한 내륙으로의 해수침투를 연구하고자 한다.

  • PDF

대향타겟식 스퍼터법으로 제작된 ZnO/Glass 박막의 결정학적 특성에 관한 연구

  • 금민종;성하윤;공석현;손인환;김경환
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.34-34
    • /
    • 2000
  • ZnO 박막은 대칭 육방정계(hexagonal) wurtzite-type crystal로써 결정구조에서의 이방성, 비화학양론 결합구조와 다양한 전기적, 광학적 그리고 타성파적 성질 때문에 현재 여러 응용분양에서 각광을 받고 있는 재료 중의 하나이다. 이러한 특성을 갖는 ZnO 박막은 결정학적으로 기판에 수직인 c-축 우선방위현상(preferred orientation)을 나타내며 압전 특성을 이용하여 응용을 할 경우 이 c-축 우선방위현상에 따라 압전 특성에 큰 차이가 있으며 ZnO 박막의 형성 조건에 의해 c-축 우성배향성은 큰 차이가 있다. 특히 스퍼터법을 이용하여 ZnO 박막을 형성하는 경우에는 투입전력, 기판온도, 분위기 가스압력, 타겟간 거리등의 증착조건에 의해 결정학적 및 전기적 특성이 크게 영향을 받게 된다. 따라서 결정학적으로 양호하며 고품위의 특성을 갖는 ZnO 박막을 제작하기 위해서는 최적의 증착조건을 확립하여 ZnO 박막을 제작할 필요가 있다. 본 연구에서 사용된 대향 타겟식 스퍼터장치는 두 개의 타겟이 서로 마주보게 배치되어 있고 양 타겟에 수직으로 분포하고 있는 자계가 ${\gamma}$-전자를 구속하게 되어 고밀도의 플라즈마를 형성할 수가 있다. 따라서 10-4Torr에서도 안정한 방전을 유지할 수가 있으며 기판의 위치가 플라즈마로부터 이격되어 (plasma-free)있는 위치에 있기 때문에 플라즈마내의 높은 에너지를 갖는 입자들의 기판충돌을 최대한 억제하여 고품위의ZnO 박막을 제작할 수가 있다. 이러한 특징을 갖는 대향타겟식스퍼터장치를 이용하여 본 연구에서는 비정질 slide glass를 기판으로 하여 ZnO 박막을 증착하였으며 XRD(X-ray Diffractometer)를 이용하여 증착된 ZnO 박막의 결정학적 특성을 측정하였다. ZnO 박막은 산소 가스압력과 기판온도, 인가 전류를 변화시켜가며 증착하였으며 이에 따른 박막의 결정성 변화를 알아보았다. 기판온도를 실온에서 점차 증가시켜나가면 $\Delta$$\theta$50은 급격히 감소하며 30$0^{\circ}C$에서는 결정성이 우수한 막을 얻을 수 있었다. 또한 산소 가스 압력이 0.5~1mTorr에서 $\Delta$$\theta$50은 양호한 값을 나타내었지만 그 이상에서는 c-축 배향성이 나빠짐을 확인하였다. 따라서 대향타겟식스퍼터 장치를 이용하여 ZnO 박막을 증착시 가스압력 0.5~1mTorr, 기판온도 20$0^{\circ}C$이상의 막 제작조건에서 결정성이 우수하게 나타나는 것을 확인할 수 있었다.

  • PDF