• Title/Summary/Keyword: 수직비정형

Search Result 45, Processing Time 0.028 seconds

Development of Preliminary Seismic Performance Evaluation Method for Residential Piloti Buildings Using Stiffness-Based Soft Story Ratios (강성기반 연층비를 활용한 주거형 필로티 건축물의 내진성능예비평가 기법 개발)

  • Choi, Jae-Hyuk;Choi, Insub;Kim, JunHee;Sohn, JungHoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • There have been many instances of damage to buildings with soft stories, and it is important to consider vertically irregular buildings when evaluating the seismic performance of existing buildings. However, because conventional methods do not easily reflect vertical irregularities with sufficient accuracy, it is possible to underestimate or overestimate the seismic performance of buildings with vertical irregularities. This study aims to develop a seismic performance evaluation method for vertically irregular buildings using the stiffness-based soft story ratio (SSR), which is a parameter that represents the ratio of the demand and the capacity for displacement and refers to the ratio of displacement concentration in buildings. The seismic performance evaluation method developed in this study is compared with the conventional seismic performance evaluation method for four piloti buildings, using the first-floor column as a variable. Conventional seismic performance evaluation methods often overestimate the seismic performance for models in which vertical irregularities are maximized. However, results of the proposed seismic performance evaluation method are identical to those from a detailed evaluation for all models. Therefore, it is considered that the proposed seismic performance evaluation method can provide more precise seismic performance evaluation results than conventional methods in the case of piloti buildings, where vertical irregularities are maximized.

Construction Sequence Analysis for Checking Stability in Complex-Shaped High-Rise Building under Construction (비정형 초고층 건물의 시공 중 안정성 검토를 위한 시공단계해석)

  • Jang, Dong-Woon;Kang, Ji-Hun;Chea, Seung-Yun;Eom, Tae-Sung;Kim, Jae-Yo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.263-266
    • /
    • 2010
  • 비정형 형상의 초고층 건물이 증가함에 따라, 설계 시공 계획 단계에서의 시공 중 건물의 구조적 안정성 검토가 핵심 사항으로 부각되고 있다. 시공 중 비정형 초고층 건물의 안정성을 확보하기 위해서는, 횡력저항시스템이 완전히 형성되기 전 구조체 자중의 불균형 분포에 의해 발생하는 수직부재의 불균등 축소, 골조의 기울어짐 혹은 횡변위 등이 시공단계해석에 의하여 검토되어야 하며, 시공단계해석은 구조건전성모니터링, 시공 보정 프로그램, 시공계획 수립 등과 체계적으로 결합되어 진행되어야 한다. 이 논문은 시공 중 비정형 초고층 건물의 구조 안정성 검토를 위하여, 실제 비정형 초고층 프로젝트에 시공단계해석을 적용하였으며, 시공 중 초고층 건물의 안정성 확보를 위한 주요 검토 항목 및 방법을 제시하였다.

  • PDF

A Comparison of Seismic Capacity for The Frames with Vertical Irregularities (수직 비정형 골조의 내진성능 비교)

  • Kwag, Jin-I;Cho, So-Hoon;Kang, Dae-Eon;Kim, Jong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.259-262
    • /
    • 2010
  • 최근 건물형상의 다양화로 인하여 수직부재의 불규칙성이 빈번하게 발생하면서 전통적인 보-기둥 형식의 골조에서 변형된 보와 기둥의 특징을 공유하고 있는 경사기둥의 사용빈도가 높아지고 있다. 현재 국내에서 사용하고 있는 내진설계방법은 강도에 근거를 둔 설계법으로서 구조물이 탄성상태에서 저항해야 하는 부재력에 근거하고 있다. 그러나 기준에서 규정하고 있는 또는 그 이상의 지진하중이 구조물에 가해지는 경우에 구조물은 비선형 거동을 하게 되는데 구조물이 비선형 거동을 할 때에는 탄성상태와는 다른 힘의 흐름을 나타내게 된다. 본 논문에서는 12층 철골 모멘트 골조 구조물에 대하여 횡력에 저항하는 정형화된 골조와 경사기둥을 이용한 골조의 내진성능 및 비선형 거동을 조사하였다. 그 결과 강기둥-약보로 설계된 정형화된 구조물에서는 보의 소성힌지가 계속적으로 발달하면서 구조물이 저항하는데 반하여 경사기둥을 가진 구조물은 비탄성 상태에서 경사기둥에 인접한 기둥부재로 하중이 집중되면서 정형골조에 비하여 붕괴 메카니즘이 훨씬 작은 변위에서 발생하는 것을 볼 수 있었다.

  • PDF

Evaluation and Adjustment of Lateral Displacement of Complex-shaped RC Tall Buildings Considering the Displacement by Tilt Angle of Each Floor (층경사각에 의한 횡변위를 고려한 비정형 고층건물의 횡변위 평가/보정)

  • Kim, Yungon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.551-558
    • /
    • 2015
  • Lateral displacement in the most complex-shaped tall buildings is caused by eccentric gravity loads which are induced by the difference in location between a center of mass and a center of stiffness. The lateral displacements obtained from analysis, using conventional procedures, are prone to overestimate the actual values because much of realignment efforts made during construction phase are ignored. In construction sequence analysis, the self-leveling of slab and the verticality of columns/walls could be considered at each construction stage. Moreover, the displacement compensation can be achieved by manual process such as re-centering - locating to global coordinates through surveying. Because the lateral displacement increases with the building height, it is necessary to set up adjustment plan through construction stage analysis in advance in order to result in displacements less than the allowable limits. Because analytical solution includes lots of assumptions, the pre-adjusting displacement should be reasonably controlled with considerations for the uncertainty due to these assumptions.

Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings (비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Because of the difference between the actual and computed eccentricity of buildings, symmetrical buildings will be affected by torsion. In provisions, accidental eccentricity is intended to cover the effect of several factors, such as unfavorable distributions of dead- and live-load masses and the rotational component of ground motion about a vertical axis. The torsional amplification factor is introduced to reduce the vulnerability of torsionally imbalanced buildings. The effect of the torsional amplification factor is observed for a symmetric rectangular building with various aspect ratios, where the seismic-force-resisting elements are positioned at a variable distance from the geometrical center in each direction. For verifying the torsional amplification factor in provisions, nonlinear reinforced concrete models with various eccentricities and aspect ratios are used in rock. The difference between the maximum displacements of the flexible edge obtained between using nonlinear static and time-history analysis is very small but the difference between the maximum torsional angles is large.

A Development of a Shape Optimization Design Techniques for the Diagrid Tapered Tall-Building (테이퍼드 다이아그리드 초고층 구조물의 형상 최적설계기법 개발)

  • Han, Sang-Eul;Lee, Han-Joo;Ryu, Jong-Hye;Jeong, So-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • In this paper, the optimal diagrid angle of atypical tall buildings has been found using diagrid optimization technique which is based on parametric algorithm. A diagrid is a diagonal grid which can be seen among atypical tall buildings and structures which effectively resist horizontal and vertical direction loads. Therefore, it is also the objective of this studyto find the maximum stiffness of atypical tall buildings by optimizing diagrid angle. Moreover, this study touches on both cylindrical and tapered off cylindrical structures, as shown in the examples to check the compatibility of optimum diagrid angle, which effectively resists horizontal deformation on top by optimization algorithm.

Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories (저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답)

  • 이한선;고동우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.81-91
    • /
    • 2003
  • Recently, many high-rise reinforced concrete(RC) bearing-wall structures of multiple uses have been constructed, which have the irregularities of weak(or soft) story and torsion at the lower stories simultaneously. The study stated herein was performed to investigate seismic performance of such a high-rise RC structure through a series of shaking table tests of a 1: 12 model. Based on the observations of the test results, the conclusions are drawn as follows: 1) Accidental torsion due to the uncertainty on the properties of structure can be reasonably predicted by using the dynamic analysis than by using lateral force procedure. 2) The mode coupled by translation and torsion induced the overturning moments not only in the direction of excitations but also in the perpendicular direction: The axial forces in columns due to this transverse overturning moment cannot be adequately predicted using the existing mode analysis technique, and 3) the hysteretic curve and the strength diagram between base shear and torque(BST) clearly reveal the predominant mode of vibrations and the failure mode.

Development of Quantity Take-off Algorithm for Irregularly Shaped Structures using 3D Object (3D기반 비정형 토목구조물 물량산출 알고리즘 개발)

  • Ha, Cheol-Seok;Moon, So-Yeong;Moon, Hyoun-Seok;Kang, Leen-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.655-666
    • /
    • 2014
  • Recently, as the appearance and exterior design of the construction structure are highlighted, the irregularly shaped structures are increasing in a construction facility. Many softwares provide a quantity take-off function of 3D object under BIM environment, however, they are focused on the limited function based on the solid modeling method. Because the vast geometric information of the curved surface is difficult to extract in the 3D objects that consist of major changes in vertical section shape as the irregularly shaped structures, it is difficult to express a 3D object as a solid model. On the other hand, the irregularly shaped structures can be expressed in relatively free in the surface model because the surface model consists of points, lines and surfaces. Accordingly, the surface modeling method is suitable for the modeling of large irregularly shaped structures. This study suggests a quantity take-off algorithm for the irregularly shaped structures using the surface modeling approach that is beneficial in the design work of structures. Some case projects are used for verifying the accuracy of the proposed method.

Anamorphic Infrared Camera with Wide Field of View and Optomechanical Automatic Athermalization Mechanism (광기구적 자동 비열화가 적용된 비정형 적외선 광각 카메라)

  • Kim, Hyunsook;Ok, Chang Min
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.187-194
    • /
    • 2015
  • A system of infrared camera optics with wide field of view and anamorphic lenses is proposed, and its validity verified through manufacture. The infrared camera produced provides a wide field of view of over 100 degrees in the horizontal direction, and an even greater magnification in the vertical direction. As a result, the system can have a wider surveillance range and improved detection ability at the same time. In addition, a new optomechanical automatic athermalization mechanism is proposed and applied to the infrared camera. Its performance and utility is proved through testing.

Seismic Behavior of High-rise Steel Moment-resisting Frames with Vertical Mass Irregularity (수직질량 비정형이 존재하는 고층 강 모멘트-저항골조의 지진 거동)

  • Park, Byong-Jeong;Song, In-Hawn
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • Dynamic analyses were carried out to study the seismic response of high-rise steel moment-resisting frames in sixteen story buildings. The frames are intentionally designed by three different design procedures; strength controlled design. strong column-weak beam controlled design. and drift controlled design. The seismic performances of the so-designed frames with vertical mass irregularities were discussed in view of drift ratio. plastic hinge rotation, hysteretic energy input and stress demand. A demand curve of hysteretic energy inputs was also presented with two earthquake levels in peak ground accelerations for a future design application.