• Title/Summary/Keyword: 수직변위진폭

Search Result 22, Processing Time 0.028 seconds

GPS와 VLBI 관측소의 해수하중에 의한 수직방향 지각변위 평가를 위한 기초 연구

  • 박관동
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.30-30
    • /
    • 2003
  • GPS와 VLBI와 같은 우주측지 기술을 이용한 정밀 측위는 수 mn 정밀도의 관측소 좌표결정과 1 mm/year 정도의 고정밀 속도결정에 이용된다. 이를 위해서는 여러 가지 오차 요인들과 다양한 물리적 현상에 대한 모델링이 이루어져야 한다. 그 중의 하나가 해수 하중(ocean loading)에 의한 수직방향의 지각변위이다. 특히 한반도의 서해안은 복잡한 리아스식 해안으로 이루어져 있고, 조수간만의 차이가 크기 때문에 현존하는 모델의 정확도가 떨어진다. KVN(Korean VLBI Network)사업에서 추진하는 3기의 VLBI 중 2기가 서울과 제주도에 설치될 계획이므로, 해수하중에 의한 지각변위에 관한 연구가 선행되어야 한다. 또한 국내 GPS상시관측소의 많은 수가 서해안 지역에 설치되어 있다. 본 연구에서는 서해안 지역의 해수하중에 의한 수직방향의 지각변위를 GPS로 관측하고 이를 서해안 해수조류 모델의 정밀도를 향상시키는데 필요한 기초연구를 수행하였다. 서해안의 4개 GPS 관측소 위치에서의 해수하중에 의한 지각변위를 계산해본 결과 인천 지역에는 3 cm에 육박하는 지각변위가 수직으로 발생함을 알 수 있었다. 같은 크기와 위상의 지각변위 진폭을 GPS로 검출하기 위한 여러 가지 오차 보정과 GIPSY를 이용한 고정밀 키네마틱 GPS 자료처리에 대하여 상세히 소개한다.

  • PDF

Precision Improvement of GPS Height Time Series by Correcting for Atmospheric Pressure Loading Displacements (대기압하중에 의한 지각변위 보정을 통한 GPS 수직좌표 시계열 정밀도 향상)

  • Kim, Kyeong-Hui;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.599-605
    • /
    • 2009
  • Changes of atmospheric pressures cause short- and long-term crustal deformations and thus become error sources in the site positions estimated from space geodesy equipments. In this study, we computed daily displacements due to the atmospheric pressure loading (ATML) at the 14 permanent GPS sites operated by National Geographic Information Institute. And the 10-year GPS data collected at those stations were processed to create a continuous time series of the height estimate. Then, we corrected for the ATML from the GPS height time series to see if the correction changes the site velocity and improves the precision of the time series. While the precision improved by about 4% on average, the velocity change was not significant at all. We also investigated the overall characteristics of the ATML in the southern Korean peninsula by computing the ATML effects at the inland grid points with a $0.5^{\circ}{\times}0.5^{\circ}$ spatial resolution. We found that ATML displacements show annual signals and those signals can be fitted with sinusoidal functions. The amplitudes were in the range of 3-4 mm, and they were higher at higher latitudes and lower at the costal area.

Experimental Study for the Resonance Effect of the Power Buoy Amplitude (공진형 전력부이의 상하변위증폭 효과에 관한 실험적 연구)

  • Kweon, Hyuck-Min;Koh, Hyeok-Jun;Kim, Jung-Rok;Choi, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, laboratory experiments and numerical simulations were conducted to test the performance of resonance power buoy system proposed by Kweon et al.(2010). The system is composed of a linear generator and a mooring buoy. The mover of the linear generator mainly has heave motion driven by vertical oscillation of the buoy. In this system, the velocity discrepancy between the mover and the buoy makes electricity. However, ocean wave energy as a natural resource around Korean peninsula is comparatively small and the driving force for producing electricity is not enough for commercialization. Therefore, it is necessary that the buoy motion be amplified by using resonance characteristics. In order to verify the resonance effects on the test power buoy, the experimental investigations were conducted in the large wave flume (length of 110 m, width of 8 m, maximum depth of 6 m) equipped with regular and random plunger wave generator. The resonance draft of test power buoy is designed for the corresponding period of incident wave, 1.96 sec. Regular wave test results show that the heave response amplitude operator(RAO) by a test buoy has the amplification of 5.66 times higher compared to the wave amplitude at the resonance period. Test results of random waves show that the buoy has the largest spectrum area of 20.73 times higher at the point of not the resonance period but the shorter one of 1.85 sec. Therefore this study suggests the resonance power buoy for wave power generation for commercial application in the case of the coastal and oceanic area with smaller wave energy.

ANALYSIS OF CRUSTAL DEFORMATION DUE TO OCEAN TIDE LOADING (해양조석하중에 의한 지각변위 분석)

  • Park, Kwan-Dong;Won, Ji-Hye;Kim, Ho-Kyun;Lim, Kwan-Chang
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.249-260
    • /
    • 2007
  • The crustal deformation due to Ocean Tide Loading (OTL) in the Korean peninsula reaches up to ${\sim}3cm$ in the vertical direction. Considering that the achievable positioning accuracy of current state-of-the-art space geodesy technologies is at the several millimeter level, the centimeter-level OTL effect should be precisely modelled and corrected for. This study begins with comparison of ocean tide models and validation of OTL-prediction softwares. Different ocean tide models caused about ${\sim}6mm$ RMS differences in the vertical deformation in the Kyung-gi Bay area. When we analyzed the OTL displacements in the Seoul, Ulsan, and Seogwipo areas where three VLBI observatories are planned to be installed, the maximum displacement of ${\sim}3.5cm$ was predicted in the Seogwipo area and ${\sim}2cm$ in the Seoul and Ulsan areas. When the OTL corrections were not applied in the GPS data processing, the OTL effect propagates into the Zenith Wet Delay (ZWD) estimates, and the scale factor between ZWD differences and OTL displacements was 3.72.

Rayleigh-wave Phase Velocities and Spectral Amplitudes Affected by Insertion of an Anomalous Velocity Layer in the Overburden (천부 속도이상층이 레일리파 위상속도 및 수직변위 스펙트럼 진폭에 미치는 영향)

  • Kim, Ki Young;Jung, Jinhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.155-162
    • /
    • 2012
  • The Thomsen-Haskell method was used to determine sensitivities of the Rayleigh-wave phase velocities and spectral amplitude of vertical ground motion to insertion of a single velocity-anomaly layer into overburden underlain by a basement. The reference model comprised a 9-m thick overburden with shear-wave velocity (${\nu}_s$ of 300 m/s above a half-space with ${\nu}_s$ = 1000 m/s. The inserted layer, with a velocity of 150, 225, 375, or 450 m/s and a thickness of 1, 2, or 3 m, was placed at depths increasing from the surface in increments of 1 m. Phase velocities were computed for frequencies of 4 to 30 Hz. For inserted layer models, we placed an anomalous layer with thickness of 1 ~ 3 m, shear-wave velocity of 150 ~ 450 m/s, and at depths of 0 ~ 8 m in the overburden. The frequency range of 8 ~ 20 Hz were the most sensitive to the difference of $C_R$ between the inserted and reference models (${\Delta}C_R$) for h = 1 m and the frequency range got wide as h increased. For all of the models, the spectral amplitudes of the fundamental mode exceeded those of the $1^{st}$-higher mode except at frequencies just above the low-frequency cutoff of the $1^{st}$-higher mode.

SH Wave Scattering from Cracks: Comparisons of Approximate and Exact Solutions (SH파의 균열 산란장 해석: 근사해와 엄밀해의 비교)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Song, Sung-Jin;Schmerr, L.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.354-361
    • /
    • 2004
  • This Paper describes a crack scattering model for SH wave based on the boundary integral equation(BIE) method, where the fundamental unknown is crack opening displacement(COD). When a time harmonic plane wave was incident on a 2-D isolated crack (slit) of width 2a, the COD distributions were numerically calculated as a function of ka. The calculated COD agreed well with results obtained with other methods. The far-field scattering amplitude, which completely characterizes the flaw response, was calculated in two ways. The Kirchhoff approximation and the BIE-COD exact formulation were compared in terms of incidence angle and frequency ka in a pulse-echo mode. Maximum response was obtained for both methods at the specular reflection direction. Away from the specular direction, the Kirchhoff approximation becomes less accurate. The time domain crack response was also calculated using a band-limited spectrum of center frequency 10 MHz. At oblique incidence to the crack both methods show the existence of an antisymmetric flash points occurring from the crack edge. The Kirchhoff approximation provides an exact time interval between flash points, although it unrealistically gives the same amplitude.

Accuracy Analysis of Ocean Tide Loading Constituent Detection Using GNSS Positioning (GNSS 측위방법에 따른 해양조석하중 성분 검출 정확도 분석)

  • Yoon, Ha Su;Choi, Yun Soo;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • Various space geodetic techniques have been developed for highly precise and cost-efficient positioning solutions. By correcting the physical phenomena near the earth’s surface, the positioning accuracy can be further improved. In this study, the vertical crustal deformation induced by the ocean tide loading was accurately estimated through GNSS absolute and relative positioning, respectively, and the tidal constituents of the results were then analyzed. In order to validate the processing accuracy, we calculated the amplitude of eight major tidal constituents from the results and compared them to the global ocean tide loading model FES2004. The experimental results showed that absolute positioning and positioning done every hour during the observation time of 2 hours, which yielded an outcome similar to the reference ocean tide loading model, were better approaches for extracting tide constituents than relative positioning. As a future study, a long-term GNSS data processing will be required in order to conduct more comprehensive analysis including an extended tidal component analysis.

A Study on Fluid Surface Movement Phenomena of Magnetic Fluids in a Container Subjected to a Horizontal Oscillation (수평진동이 있는 용기내 자성유체 액면 동요 현상에 관한 연구)

  • Kim, Dae-Wan;Park, Joung-Woo;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.183-187
    • /
    • 2012
  • In this paper, fluid movement of magnetic fluid which has free surface is investigated in a container subjected to a horizontal oscillation. Here, the vertical magnetic field is applied from the bottom of this container. The experiment is performed on the magnetic fluid in a rectangular and a cylindrical container and the effects of magnetic force exerted on the magnetic fluid are investigated on the resonance frequency and liquid surface displacement. The increase of magnetic field affects on the maximum resonance point and the liquid surface displacement. In result, it changes the amplitude of the surface wave and the period of sloshing fluid movement.

Wave Response Analysis for Pontoon-type Pier: Very Large Floating Structure (폰툰형 초대형 부유체식 부두의 파랑응답해석)

  • Lee, Sang-Do;Park, Sung-Hyeon;Kong, Gil-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • In this study, we proposed a pier of pontoon-type, "Very Large Floating Structure" (VLFS), with the length of 500m, breadth of 200 m and height of 2 m in Yeosu domestic port. Since this structure ought to endure wave loads for long periods at sea, it is essential to analyze the wave response characteristics. Direct-method is used to analyze the fluid-structure problem and the coupled motion of equation is used to obtain response results. The structural part is calculated by using finite element method (FEM) and the fluid part is analyzed by using boundary element method (BEM). Dynamic responses caused by the elastic deformation and rigid motion of structure are analyzed by numerical calculation. To investigate response characteristics of the pier in regular waves, several factors such as the wavelength, water depth, wave direction and flexural rigidity of structure are considered. As a result, wave response of pier changed at the point of $L/{\lambda}$ 1.5 and represented the torsional phenomenon according to the various incident waves. And the responses showed increasing tendency as the water depths increase at the incident point in case of $L/{\lambda}=8.0$ and peak point of vertical displacement amplitude moved from side to side as the flexural rigidity of structure changes.

Comparison of Dynamic Characteristics of a Wind and Photovoltaic Hybrid Light Pole Structure with 2-bladed and 3-bladed Vertical Axis Turbine Rotors Using Vibration Measurement under Normal Operation Conditions (2엽 및 3엽 수직축 풍력-태양광 하이브리드 가로등의 발전 중 진동계측을 통한 동적 특성 비교)

  • Yi, Jin-Hak;Park, Sangmin;Yim, Sungyul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.118-125
    • /
    • 2019
  • In this study, the vibration characteristics and the resonance phenomena of a wind-solar hybrid light pole structure are compared with respect to the wind turbine type through the dynamic response measurement. Two different turbines are considered including 2-bladed and 3-bladed vertical axis wind turbine rotors. The resonance phenomenon that can occur in hybrid light pole structure is analyzed by comparing the dynamic characteristics of the structure and the excitation force under operational conditions. Displacement responses are also estimated using the acceleration measurement data by use of recently proposed method, and it is observed that the amplitude of dynamic displacement responses are in the range of 4-6 cm under the resonance in the case of 2-bladed turbine and those are limited under 2 mm in the case of 3-bladed turbine because there is no resonance.