• Title/Summary/Keyword: 수지온도

Search Result 763, Processing Time 0.027 seconds

The Toughness of Castor Oil Modified Epoxy Resins by Various Cure Temperatures (경화온도에 따른 Castor Oil/epoxy의 강인성)

  • Kim, Jong Seok;Hong, Suk Pyo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.973-978
    • /
    • 1997
  • The toughness and morphology of epoxy resin based on diglycidyl ether of bisphenol A(DGEBA) cured with of tris (dimethylaminomethy]) phenol(DMP-30) and castor oil (CO) as a toughening modifier have been studied. Mixtures of CO and an epoxy resin showed a higher miscibility than the classical CTBN modified epoxy resin. The glass transition temperature($T_g$) was decreased with the CO content and the cure temperature. It is interpreted that the networks of epoxy matrix obtained at high temperature are apparently looser and more flexible due to the lower crosslinking density. The toughness was slightly increased with the CO content at $40^{\circ}C$ of curing temperature. The toughness increased with increasing the cure temperature and CO content.

  • PDF

Accelerated Degradation Test and Failure Analysis of Rapid Curing Epoxy Resin for Restoration of Cultural Heritage (문화재 복원용 속(速)경화형 Epoxy계 수지의 가속열화시험 및 고장분석 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.467-483
    • /
    • 2017
  • In this study, the degradation properties by temperature stress of $Araldite^{(R)}$ rapid-curing epoxy resin used for inorganic cultural heritages, was identified. The tensile and tensile shear strength of durability decreased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$. In terms of stability of external stress and temperature, the slow-curing epoxy was superior to the rapid-curing epoxy, and cultural heritage conservation plans should therefore consider the strength and stress properties of restoration materials. Color differences increased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$, and glossiness decreased. Both color and gloss stability were weak, which necessitates the improvement of optical properties. Thermal properties (weight loss, decomposition temperature, and glass transition temperature) of adhesives are linked to mechanical properties. Interfacial properties of the adherend and water vapor transmission rates of adhesives are linked to performance variation. For porous media (ceramics, brick, and stone), isothermal and isohumid environments are important. For outdoor artifacts on display in museums, changes in physical properties by exposure to varying environmental conditions need to be minimized. These results can be used as baseline data in the study of the degradation velocity and lifetime prediction of rapid-curing epoxy resin for the restoration of cultural heritages.

Preparation of Activated Carbon Screen Using Stainless Steel Mesh and Cellulose Fiber (스테인레스 망과 섬유를 이용한 활성탄소 망의 제조)

  • Shin, Jinhwan;Kim, Taeyoung;Jeoung, Youngdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • In this work, stainless steel mesh-supported activated carbons were prepared using phenolic resin and cellulose fiber. $ZnCl_2$ was used as a activation reagent in this work. $ZnCl_2$-chemical activation method has been proposed to produce highly porous activated carbons. The objectives of this work were to develop an optimal condition for manufacturing activated carbon assemblies screen from stainless steel mesh and phenolic resin. The iodine number was more increased over activation temperature of $450^{\circ}C$. Iodine number was 657 mg/g at activation temperature of $550^{\circ}C$, penolic resin concentration 20% and $ZnCl_2$ concentration 15%. Iodine number was 1359.4 mg/g when 10% cellulose added to these conditions.

  • PDF

Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers (3차원 광경화성 수지와 폴리아세테이트 수지의 레이저 접합해석)

  • Choi, Hae Woon;Yoon, Sung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.701-706
    • /
    • 2015
  • In this study, experimental and computer simulation results are compared and analyzed. Three-dimensional (3D) fabricated matrices from an MJM 3D printer were joined with poly-acetate thermoplastic polymers using a diode laser. A power range of 5-7 W was used to irradiate the boundary of two polymers. The heated polymers flowed into the matrices of the 3D fabricated structure, and reliable mechanical joining was achieved. Computer simulation showed the temperature distribution in the polymers, and flow direction was estimated based on the flux and temperature information. It was found that the more than the minimum energy threshold was required to effectively join the polymers and that two scans at low-speed were more effective than four scans at high speed.

Tack Property Changes with the Storage of Textile Prepreg I (섬유 프리프레그의 저장에 따른 Tack성 변화 I)

  • Hong, Tae-Min;Won, Jong-Sung;Lee, Jung-Soon;Cho, Dae-Hyun;Lee, Seung-Goo
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.74-74
    • /
    • 2012
  • 섬유 프리프레그(Prepreg)는 강화섬유를 수지에 함침하여 B-stage로 만든 복합재료의 중간성형재료이다. 최종적으로 프리프레그를 금형에 적층하여 가열 가압하여 수지를 경화함으로써 최종제품이 완성된다. 본 연구에서는 직물형 프리프레그를 사용하였는데, 사용되는 직물형태로는 복합재료 성형공정에서 형태안정성이 우수한 평직물과 능직물이 주로 사용된다. 직물형 프리프레그를 사용한 복합재료는 작업성과 형태안정성이 우수하면서 내충격특성이 우수하여 오토바이용 헬멧, 방탄용 헬멧 등에 주로 사용된다. 프리프레그에 요구되는 주요 특성중 하나는 Tack성으로서, 성형 과정에서 프리프레그를 여러 장 적층할 때 적층된 층 간에 미끄러지지 않으면서 잘 고정되어 적층 작업을 원활하게 하는 역할을 한다. Tack성은 수지의 B-stage 경화 후의 점성 거동에 따라 변화될 수 있는 것으로 표면의 끈끈함의 정도로서 알 수 있다. Tack성은 온도에 민감하여 측정 시에 일정한 온도의 유지가 중요하다. 이러한 온도에 대한 민감성 때문에 프리프레그의 저장시 저온에서 저장하는 것이 원칙인데, 상온에 있을 경우 시간경과에 따른 Tack성 변화가 크게 나타나게 된다. 따라서 본 연구에서는 아라미드 섬유와 열경화성수지를 이용하여 프리프레그를 제조하고 이를 상온상태에서 보관 시 일정시간 경과에 따른 Tack성 변화를 알아보고자 하였다.

  • PDF

Removal of Cd(II) by Cation Exchange Resin in Differential Bed Reactor (미분층반응기에서 양이온 교환수지에 의한 카드뮴(II)의 제거)

  • Kim, Jong-Tae;Chung, Jaygwan G.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1193-1203
    • /
    • 2000
  • In this study, in order to remove Cd(II) from aqueous solutions, strongly acidic cation exchange resin(SK1B) by Diaion Co. was employed as an adsorbent. Experiments were mainly performed in two parts at room temperature($25{\pm}5^{\circ}C$) : batch tests and adsorption kinetics tests. In batch tests adsorption equilibrium time, pH effects, temperature effects, several adsorption isotherms, and finally desorption tests were examined. In differential bed tests, an optimum flow rate and an overall adsorption rate were obtained. In the batch experiment, adsorption capability increased with pH and became constant above pH 6 and adsorption quantity increased with temperature. Batch experimental data found that Freundlich and Sips adsorption isotherms were more favorable than Langmuir adsorption isotherm over the range of concentration (5~15ppm). The desorbent used in the desorption test was hydrochloric acid solution with different concentrations(0.01~2N). The degree of regeneration increased with concentration of desorbent and decreased slightly with the number of regeneration. In the continuous flow process using a differential bed reactor, the optimum flow rate was $564m{\ell}/min$ above which the film diffusion resistance was minimized. The overall adsorption rate for the removal of Cd(II) by cation exchange resin was found as follows ; $r=1.3785C_{fc}^{1.2421}-2.0907{\times}10^{0.0746C_i}\;q_e^{0.0121C_i-0.0301}$

  • PDF

Role of F/P Ratio on Curing Behavior for Phenolic Resol and Novolac Resins by FT-IR (FT-IR 분석에 의한 레졸과 노블락 페놀 수지의 경화거동에 미치는 F/P 몰비)

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.16-24
    • /
    • 2001
  • The curing behavior of a phenolic resin (F/p: 1.3, 1.9, 2.5 for resol resin, F/P: 0.5, 0.7, 0.9 for novolac resin) has been studied by FT-IR spectroscopy. In this study is to synthesis of resol and novolac type phenolic resin with different F/P molar ratios and to compare the level of cure at different curing temperature conditions ($130^{\circ}C$, $160^{\circ}C$, $180^{\circ}C$ for resol resin, $160^{\circ}C$, $170^{\circ}C$, $180^{\circ}C$ for novolac resin) for 3, 5, 7, 10, 20, and 60 (min.), respectively. The conversion (${\alpha}$) was determined by the ratio of the peak area with time to the peak area of non-baked phenolic QH ($3300cm^{-1}$) at spectra. It is concluded that the initial curing rate of resol and novolac resin was increased as the molar ratio of formaldehyde/phenol increased and as the curing temperature of resin increased. According to the analysis was by the homogenous first-order model, the initial curing rate of resol and novolac resin was increased as the molar ratio of formaIdehyde/phenol increased at specific curing temperature.

  • PDF

Separation and Purification of Fructo-oligosaccharides by an Ion-Exchange Resin Column (이온교환수지탑을 이용한 Fructo-oligosaccharides의 분리 및 정제)

  • 윤종원;송승구
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.35-39
    • /
    • 1994
  • Separation of pure fructo-oligosaccharides from the mixed solution of glucose, sucrose and fructo-oligosaccharides was studied using a cationic ion-exchange resin column. Optimum separation conditions, i.e., temperature, feeding rate and the ratio of column vs. diameter were evaluated, which were found to be $85^{\circ}C$, $0.25h^{-1}$ and 30, respectively. At the optimized separation conditions, high-purity fructo-oligosaccharides up to 96% were obtained and the total recovery yield was about 66% after four cycles. After the chromatographic separation, purification to remove the salts and color in pure fructo-oligosaccharides solution was successfully conducted using the mixed-bed of cationic and anionic ionexchange resin columns.

  • PDF

Assessment of Temperature Reduction and Heat Budget of Extensive Modular Green Roof System (경량모듈형 옥상녹화시스템의 온도저감 및 열수지 평가)

  • Kim, Se-Chang;Park, Bong-Ju
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.503-511
    • /
    • 2013
  • The purpose of this study was to evaluate temperature reduction and heat budget of extensive modular green roof planted with Sedum sarmentosum and Zoysia japonica. Plant height and green coverage were measured as plant growth. Temperature, net radiation and evapotranspiration of concrete surface, green roof surface, in-soil and bottom were measured from August 2 to August 3, 2012 (48 hours). On 3 P.M., August 3, 2012, when air temperature was the highest ($34.6^{\circ}C$), concrete surface temperature was highest ($57.5^{\circ}C$), followed by surface temperature of Sedum sarmentosum ($40.1^{\circ}C$) and Zoysia japonica ($38.3^{\circ}C$), which proved temperature reduction effect of green roof. Temperature reduction effect of green roof was also shown inside green roof soil, and bottom of green roof. It was found that Zoysia japonica was more effective in temperature reduction than Sedum sarmentosum. Compared with the case of concrete surface, the highest temperature of green roof surface was observed approximately 2 hours delayed. Plant species, temperature and soil moisture were found to have impact on surface temperature reduction. Plant species, air temperature, soil moisture and green roof surface temperature were found to have impact on temperature reduction in green roof bottom. As results of heat budget analysis, sensible heat was highest on concrete surface and was found to be reduced by green roof. Latent heat flux of Zoysia japonica was higher than that of Sedum sarmentosum, which implied that Zoysia japonica was more effective to improve thermal environment for green roof than Sedum sarmentosum.