• Title/Summary/Keyword: 수지상정

Search Result 17, Processing Time 0.023 seconds

An Experimental Study on the Fabrication and the Compression Behavior of Semi-Solid Aluminum Material (반응용 알루미늄재료의 제조 및 압축거동에 관한 실험적 연구)

  • Gang, Chung-Gil;Yun, Jong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.796-805
    • /
    • 1996
  • A fabrication process using Semi-Solid Material(SSM) for casting alloy has been studied to demonstrate the possibility for mass production with controlled solid fraction. The SSM was fabricated under the various solid fractions and preheating temperatures of mold. The behaviour of a semi-solid global microstructure has been investigated under the various heating and die temperatures for solid fraction. The effect of reheating time on the globularization of SSM microstructure has been investigated in detail. And the behavior of SSM which has the solid fraction 0.5 was observed under compression. The stress strain relationship was also obtained for the compression test of semi-solid materials. The rheological behaviour of semi-solid with globule microstructure was investigated as a function of the compression velocity under isothermal holing conditions.

Solidification Process of an Al-Cu Alloy in a Vertical Annular Mold and Effects of Cooling Rate on Macrosegregation (수직환상주형내 Al-Cu합금의 응고과정 및 냉각속도의 조대편석에 대한 영향)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1818-1832
    • /
    • 1994
  • Transport process during solidification of an AI-CU alloy in a vertical annular mold of which inner wall is cooled is numerically simulated. A model which can take account of local density dependence on the solute concentration is established and incorperated in the analysis. Results show that thermally and solutally induced convections are developed in sequence, so that there is little interaction between them. Thermal convection effectively removes the initial superheat from the melt and vanishes as solidification proceeds from the cooling wall. On the other hand, solutal convection which is developed later over the meshy and the pure liquid regions leads to large-scale redistribution of the consituents. The degree of the initial superheating hardly affects overall solidification behavior except the early stage of the process, when the cooling rate is kept constant. Macrosegregation is reduced remarkably with increasing cooling rate, because not only the liquidus interface advances so quickly that time available for the solute transport is not enough, but also the interdendritic flow is strongly damped by rapid crystal growth within the mushy region.

A Feasibility Study on the Brazing of Zircaloy-4 with Zr-Be Binary Amorphous Filler Metals (비정질 이원계 합금 Zr-Be 용가재를 이용한 지르칼로이-4의 브레이징 타당성 검토)

  • 고진현;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.26-31
    • /
    • 1999
  • An attempt was made in this study to investigate the brazing characteristics of Zr-Be binary amorphous alloys for the development of a new brazing filler metal for joining Zircaloy-4 nuclear fuel cladding tubes. This study was also aimed at the feasibility study of rapidly solidified amorphous alloys to substitute the conventional physical vapor-deposited(PVD) metallic beryllium. The $Zr_{1-x}Be_{x}$($0.3\leq$x$\leq0.5$) binary amorphous alloys were produced in the ribbon form by the melt-spinning method. It was confirmed by x-ray diffraction that the ribbons were amorphous. The amorphous. the amorphous alloys were used to join bearing pads on Zircaloy-4 nuclear fuel cladding tubes. Using Zr-Be amorphous alloys as filler metals, it was found that the reduction in the tube wall thickness caused by erosion was prevented. Especially, in the case of using $Zr_{0.65}Be_{0.35}$ and $Zr_{0.7}Be_{0.3}$ amorphousalloys, the smooth and spherical primary $\alpha$-Zr particles appeared in the brazed layer, which was the most desirable microstructure from the corrosion-resistance standpoint.

  • PDF

Solidification Process of a Binary Mixture with Anisotropy of the Mushy Region (머시영역의 비등방성을 고려한 2성분혼합물의 응고과정)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.162-171
    • /
    • 1993
  • This paper deals with the anisotropy of the mushy region during solidification process of a binary mixture. A theoretical model which specifies a permeability tensor in terms of pricipal values is proposed. Also, the governing equations are modified into convenient forms for the numerical analysis with the existing algorithm. Some test computations are performed for soeidification of aqueous ammonium chloride solution contained in a square cavity. Results show that not only the present model is capable of resolving fundamental characteristics of the tranport phenomena, but also the anisotropy significantly affects the interdendritic flow structure, i.e., double-diffusive convection and macrosegregation patterns.

Mechanical Properties and Electrical Conductivities of In-Situ Cu-9Fe-1.2X(X=Ag, Cr, Co) Microcomposite Wires (Cu-9Fe-1.2X (X=Ag, Cr, Co)계 미세복합재료전선의 기계적 특성 및 전기전도도)

  • Song, Jae-Suk;Im, Mun-Su;An, Jang-Ho;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • In this study, microstructure and mechanical properties and electrical conductivities of in situ Cu-Fe-Xi(Xi=Ag, Cr or Co) alloy wires obtained by cold drawing combined with intermediate heat treatments have investigated. During cold working the primary and secondary dendrite arms are aligned along the drawing direction and elongated into filaments after deformation processing. The addition of Ag was found to be more effective in reducing the microstructural scale at the given draw ratio than that of Co or Cr throughout the drawing processing. The ultimate tensile strength and the conductivity of the Cu-Fe based composites containing Ag were higher than those of Cu-Fe composites containing Co or Cr. The good mechanical and electrical properties of Cu-Fe-Ag wires may be associated with the more uniform distribution of the finer filaments in the wires containing silver. The strength of Cu-Fe-Xi composites is dependent on the spacing of the Fe filaments in accord with a Hall-Petch relationship. The fracture surfaces of all the specimens showed ductile-type fracture and iron filaments occasionally observed on the fracture surfaces.

  • PDF

A Study on the Characteristics of Low Pb Sn-5%Pb-1.5%Pb-1.5Ag-x%In Solder Alloys (저 Pb Sn-5%Pb-1.5%Ag-x%In계 솔도 합금의 특성에 관한 연구)

  • Hong, Sun-Guk;Ju, Cheol-Hong;Gang, Jeong-Yun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1011-1019
    • /
    • 1998
  • This work designed Sn-5%Pb-1.5%Ag-x%In solder alloy to develop the solder alloy with low Pb content. This solder alloy doesn't cause environmental pollution. and this study reviewed the probability of replacement of Sn-37%Pb solder as evaluation of melting range, wettability. microstructure, microhardne'ss, tensile strength, drossability of this new solder alloys. The level of international regulation in dissolution amount of Pb ion was 3ppm. But dissolution amount of Pb ion in Sn-5%Pb solder alloy confirmed not to threat the global environmental is 0.46ppm. The melting range of this solder alloy was $183-192^{\circ}C$. Also the range of solidification was very narrow within $5^{\circ}C$. The wettability was similar to Sn-37%Pb solder, and the effect of amount of In addition of wettability couldn't be founded. The probability of replacement in the melting range and wettability is very high. And microhardness of this solder alloy was 1.5 times of conventional type solder. Tensile strength of new solder alloys was a little high than that of conventional type solder. With increasing amount of In% addition, tensile strength was increased, but elongation was decreased. The solder alloy of l%In addition revealed AgSn and Pb on dendrite microstructure boundary, and $Ag_3Sn$, $Ag_3In$ and Pb were revealed on it at the solder alloy of 3% In addition. The drossability was superior to Sn-37%Pb solder alloy and the solder alloys of 2% In addition was not generated for 3hrs.

  • PDF

Association between Tuberculosis Case and CD44 Gene Polymorphism (결핵 발병과 CD44 유전자 다형성사이의 연관성 연구)

  • Lim, Hee-Seon;Lee, Sang-In;Park, Sangjung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.323-328
    • /
    • 2019
  • Tuberculosis, a chronic bacterial infection caused by Mycobacterium tuberculosis (MTB), differs in its status latency and activity because of the characteristics of MTB, immune status of the host, and genetic susceptibility. The host defense mechanism against MTB is caused mainly by interactions between macrophages, T cells, and dendritic cells. CD44 is expressed in activated T cells when infected with MTB and regulates lymphocyte migration. In addition, CD44 mediates leukocyte adhesion to the ECM and plays a role in attracting macrophages and $CD4^+$ T cells to the lungs. Therefore, genetic polymorphism of the CD44 gene will inhibit the host cell immune mechanisms against MTB. This study examined whether the genetic polymorphism of the CD44 gene affects the susceptibility of tuberculosis. A total of 237 SNPs corresponding to the CD44 genes were analyzed using the genotype data of 443 tuberculosis cases and 3,228 healthy controls from the Korean Association Resource (KARE). Of these, 17 SNPs showed a significant association with the tuberculosis case. The most significant SNP was rs75137824 (OR=0.231, CI: 1.51~3.56, $P=1.3{\times}10^{-4}$). In addition, rs10488809, one of the 17 significant SNPs, is important for the tuberculosis outbreak can bind to the JUND and FOS transcription factors and can affect CD44 gene expression. This study suggests that polymorphism of the CD44 gene modulates the host susceptibility to tuberculosis in a variety of ways, resulting in differences in the status of tuberculosis.