• Title/Summary/Keyword: 수증기기 개질기

Search Result 129, Processing Time 0.028 seconds

Production of Hydrogen by Thermochemical Transition of Lauan Sawdust in Steam Reforming Gasification (수증기개질 가스화반응을 이용한 나왕톱밥으로부터 수소제조특성)

  • Park, Sung-Jin;Kim, Lae-Hyun;Shin, Hun-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.908-912
    • /
    • 2012
  • Lauan sawdust was gasified by steam reforming for hydrogen production from biomass waste. The fixed bed gasification reactor with 1m height and 10.2 cm diameter was utilized for the analysis of temperature and catalysts effect. Steam was injected to the gasification reactor for the steam reforming effect. Lauan sawdust was mixed with potassium carbonate, sodium carbonate, calcium carbonate, sodium carbonate + potassium carbonate and magnesium carbonate + calcium carbonate catalysts of constant mass fraction of 8:2 which was injected to the fixed gasification equipment. The compositions of production gas of gasification reaction were analyzed at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. Fractions of hydrogen, methane and carbon monoxide gas in the production gas increased when catalysts were used. Fractions of hydrogen, methane and carbon monoxide gas were increased with increasing temperature. The highest hydrogen yield was obtained with sodium carbonate catalyst.

Hydrogen production from natural gas steam reforming over metal structured catalyst with various geometries (다양한 형상의 금속 구조체 촉매를 이용한 천연가스 수증기 개질반응으로부터 수소생산)

  • Koo, Kee Young;Choi, Eun Jeong;Joo, Hyunku;Jung, Un Ho;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.224.1-224.1
    • /
    • 2010
  • 본 연구에서는 천연가스 수증기 개질반응에 니켈 촉매가 코팅된 금속 구조체 촉매를 적용하여 수소를 생산하였다. 금속구조체 촉매는 기존 펠릿 촉매가 충진 된 촉매반응기에 비해 열 및 물질 전달 특성이 우수하여 이를 여러 개질반응에 적용하고자하는 연구가 수행되어 왔다. 하지만, 기존 금속구조체 촉매의 개발에 있어 촉매와 금속 지지체간의 안정한 결합을 통한 열안정성 확보에 대한 문제는 여전히 해결과제로 남아 있다. 따라서, 본 연구에서는 니켈 촉매를 금속 지지체에 안정하게 부착하기 위한 금속 지지체 표면 처리 방법을 개발하였으며 금속 구조체의 형상에 상관없이 균일한 표면처리가 가능하였다. 개발된 표면 처리방법을 적용한 금속 구조체 촉매는 촉매와 금속지지체간의 결합력 향상으로 인해 120시간 이상 안정한 반응활성을 보였다. 또한, 빠른 공간속도에서도 펠릿촉매와 표면처리를 적용하지 않은 금속 구조체 촉매에 비해 높은 촉매 활성을 보였다. 뿐만 아니라, 본 연구에서 개발된 표면처리를 모노리스와 폼을 비롯한 다양한 형상의 금속구조체 촉매에 적용하여 기하학적 표면 특성에 따른 촉매의 활성 차이를 살펴보았다. 겉보기 표면적이 넓은 금속구조체일 수록 촉매의 고분산 코팅에 유리하여 높은 활성을 보였다.

  • PDF

A comparative study for steam-methane reforming reaction analysis model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Jung, Tae-Yong;Dong-Hoon, Shin;Nam, Jin-Hyn;Kim, Yong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1997-2002
    • /
    • 2007
  • The reformer is one of the most important chemical processes for the production of high purity hydrogen from fossil fuel. This study compares zero-dimensional model with CFD models for reaction analysis of methane-steam reformer. The zero-dimensional model is an empirical equation, however CFD model uses reactions of Arrhenius type. Because the reaction coefficients of the steam-methane catalytic reforming have not been reported before in the form of Arrhenius type, the present study aims to find the appropriate reaction coefficients. The used CFD code is Fluent 6.2 version. Several models are compared for the case of various operating temperature, mass of catalyst and steam to methane ratio.

  • PDF

A Study on the Heat Accumulation Performance of Ceramic Honeycomb located on the Flat Burner (Flat Burner 위에 설치된 Ceramic Honeycomb의 축열성능 연구)

  • Park, Jae-Min;Heo, Su-Bin;Yoon, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.244-249
    • /
    • 2012
  • Recently energy crisis and environmental pollution using fossil fuel became social issue. The Fuel Cell, one of the new and renewable energy has great advantage for the former mentioned problems. The PEM Fuel Cell needs highly purified hydrogen for fuel, in many cases CH4 was reformed to H2 basically using steam reforming. The purpose of this paper is to understand the probability of ceramic honeycomb to apply the combustor of STR. We tested the heat accumulation performance of ceramic honeycomb by change of excess air ratio. The results were suitable for our purpose and also these results can be used to make high temperature air at mild combustion field.

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

The performance evaluation for H2 reforming of the plate type hydrogen generation system (평판형 수소생산시스템의 수소개질 성능평가)

  • Heo, Su-Bin;Yun, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • Hydrogen energy, a field of low-carbon substitute energy, can be produced by fossile fuel reforming and electrolysis of water etc. We developed 1kW class flat type reformer for PEM Fuel Cells. The PEMFC is highly sensitive to carbon monoxide because CO has detrimental effects on the performance of the fuel cell. Thus, reformed gas supplied to Fuel cell system, which maintained CO concentration below 10ppm. After applying optimum drive condition, reformed gas was measured with gas chromatography and could find out about each experimental condition of $H_2$ and CO concentration. As a results, The 1kW class plate type hydrogen generation system's optimum condition is A/F ratio ${\alpha}=1.3$, STR temperature 1023K, S/C ratio 3, and $PrOx1{\cdot}2$ 30cc/min. It turns out that installation of PrOx 2 stage is more efficient for reducing CO concentration.

Steam Reforming of Methane for Chemical Heat Storage As a Solar Heat Storage(Part 2. Parameters Effect on Methane Conversion) (화학축열을 통한 태양열 저장을 위한 메탄의 스팀개질 반응 특성(Part 2. 조업변수의 영향))

  • Yang, D.H.;Chung, C.H.;Han, G.Y.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.29-35
    • /
    • 2001
  • The chemical heat storage as the one way of utilization for high temperature solar energy was considered. The stram reforming reaction of methane was chosen for endothermic reaction. The reactor was made of stainless steel tube and it's dimension was 0.635 cm I.D. and 30 cm long, coiled tube because of the geometry requirement of solar receiver The effects of space velocity and reactants mole ratio on the methane conversion and CO selectivity were examined. From the experimental results, the optimum steam/methane mole ratio was determined.

  • PDF

Study on Methane Steam Reforming utilizing Concentrated Solar Energy -Part 1. In search of the best reaction condition for steam reforming of methane- (태양열을 이용한 메탄의 수증기 개질 반응기 연구 -Part 1. 수증기 개질 반응에서의 최적 반응 조건 탐색-)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.13-19
    • /
    • 2005
  • The reaction of steam reforming of methane with commercial catalysts was conducted for thermochemical heat storage. The reaction conditions were investigated for temperature range of 700 to $900\;^{\circ}C$ and steam to carbon mole ratios between 3.0 and 5.0. The reactor was made of stainless steel and it's dimension was 12 cm inside diameter and 6cm long. The effects of space velocity and reactants mole ratio and temperature on the methane conversion and CO selectivity were examined. Optimum reaction condition was determined. There was not a significant difference of methane conversion and CO selectivity compared to conventional reactor.

The Effect of Operating Conditions on the Heat-flow Characteristics and Reforming Efficiency of Steam Reformer with Combustor (연소기가 장착된 수증기 개질기에서 운전조건이 열유동 특성 및 개질효율에 미치는 영향)

  • Kim, Ji-Seok;Lee, Jae-Seong;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.36-45
    • /
    • 2011
  • The heat-flow characteristics and reforming efficiency of steam reformer with combustor are numerically investigated at various operating conditions. SCR(Steam to Carbon Ratio) and GHSV(Gas Hourly Space Velocity) are adopted as important operating conditions. User-Defined-Function(UDF) was used to simultaneously calculate reforming and combustion reaction. Numerical results show that hot burned gas rise by a buoyant force and heat exchange between reforming reactors and cocurrent flow occurs in the combustion region. The results also indicate that an increase of SCR leads to decrease the mole fraction of hydrogen at the reactor outlet. As GHSV increases, conversion rate decreases.

Effect of Carbon Capture Using Pre-combustion Technology on the Performance of Gas Turbine Combined Cycle (연소전 처리를 이용한 탄소포집이 가스터빈 복합화력 플랜트의 성능에 미치는 영향)

  • YOON, SUKYOUNG;AHN, JIHO;CHOI, BYEONGSEON;KIM, TONGSEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.571-580
    • /
    • 2016
  • In this paper, performance of the gas turbine combined cycle(GTCC) using pre-combustion carbon capture technology was comparatively analysed. Steam reforming and autothermal reforming were used. In the latter, two different methods were adopted to supply oxygen for the reforming process. One is to extract air form gas turbine compressor (air blowing) and the other is to supply oxygen directly from air separation unit ($O_2$ blowing). To separate $CO_2$ from the reformed gas, the chemical absorption system using MEA solution was used. The net cycle efficiency of the system adopting $O_2$ blown autothermal reforming was higher than the other two systems. The system using air blown autothermal reforming exhibited the largest net cycle power output. In addition to the performance analysis, the influence of fuel reforming and carbon capture on the operating condition of the gas turbine and the necessity of turbine re-design were investigated.