• Title/Summary/Keyword: 수증기개질기

Search Result 129, Processing Time 0.022 seconds

Investigation of the coaxial cylindrical steam reformer for fuel cell applications (연료전지 적용을 위한 동축원통형 수증기 개질기의 연구)

  • Park, Joon-Geun;Lee, Shin-Ku;Bae, Joong-Myeon;Kime, Myoung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.113-116
    • /
    • 2007
  • Performance of a steam reformer can be improved by using a coaxial cylindrical reactor, because the design can enhance the heat transfer for the steam reforming reaction, which is the one of main rate-determining steps of overall reactions. The objective of this study is to investigate the coaxial cylindrical reactor numerically. Pseudo-homogeneous model and one medium approach are incorporated for the chemical reactions, and models are validated with experimental results. The catalyst of the coaxial cylindrical reactor is 67% for one of the cylindrical reactor, but fuel conversion of the coaxial cylindrical reactor is increased by 10%. Heat flux profiles are investigated by modified Nusselt number and heat flux which is transported from the product gas to the catalyst bed affecting performance of the steam reformer.

  • PDF

Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor (마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조)

  • Lee, Jin-Woo;Jeon, Hye-Jeong;Hong, Sung-Chang
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Commercial catalyst (Cu-Zn/$Al_2O_3$, Johnson Matthey Co., 83-3 Catalyst) was applied to the hydrogen production by steam reforming of methanol in the micro-channel reactor (MCR). The steam reforming of methanol was tested over Cu-Zn catalyst at temperatures in the range of 200 and 300$^{\circ}C$, the catalyst size of 0.05${\sim}$2.2 mm, the space velocity of 3,000${\sim}$10,000 $hr^{-1}$ in a fixed bed continuous flow reactor. The conversion of methanol and the yield $H_2$ preferred high temperatures and low space velocities, and had optimal results with the particle size of 0.35 mm. Based on the results from experiments with fixed bed reactor, two types of MCR, boat bed and stacked bed MCRs, were studied. The stacked bed type MCR showed better methanol conversion compared with the boat type one.

Performance and Operational Characteristics of Natural Gas Fuel Processor for 1kW Class PEMFCs (1kW급 고분자 연료전지용 통합형 천연가스 개질 수소 제조 시스템의 성능 및 운전 특성)

  • Seo, Yu-Taek;Seo, Dong-Joo;Seo, Young-Seog;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-20
    • /
    • 2006
  • 한국에너지기술연구원에서는 가정용 고분자연료전지 열병합 발전시스템을 위한 통합형 천연가스 연료처리 시스템을 개발해 왔다. 가정용 시스템으로서 필수적인 소형화와 고효율을 현실화하기 위해, 연료처리 시스템의 각 단위 공정 즉 수증기 개질, 수성가스 전이, 선택적 산화 공정 등을 이중 동 심관형 반응기에 통합하여 상호 열교환이 용이하도록 반응기를 설계하였다. 현재 시험 운전 중인 Prototype-I 연료 처리 시스템은 1kW급 고분자 연료전지 열병합 발전 시스템에 개질 가스를 공급하기 위해 설계되었으며, 기초 성능은 정격 부하 운전시 열효율 78% (HHV 기준), 메탄 전환율 91%이다. 개질 가스 내 일산화탄소 농도는 고분자 연료전지 전극의 피독을 피하기 위해 10ppm 이하로 유지되어야 하며, Prototype-I 연료 처리 시스템은 백금과 루테늄 촉매를 적용한 선택적 산화 반응기를 통해 개질 가스 내 일산화탄소 농도를 10ppm 이하로 제거하였다. 일반 가정에서는 고분자 연료전지 시스템의 부하 변동이 예상되기 때문에 연료 처리 시스템의 부하 변동 운전 특성도 살펴보았다 정격 부하에서 80%, 60%, 40%로 부하를 변동하며 운전하였고, 각 부하에서 안정한 메탄 전환율과 10ppm이하의 일산화탄소 농도를 보였다. 80%까지는 열효율이 77%로 큰 변화를 보이지 않았으며, 60%에서는 76%, 40%에서는 72%로 열효율이 감소하는 현상을 보였다 연료 처리 시스템의 일일 시동-정지 운전시 내구성을 테스트 중이다. 현재까지 50여회의 일일-시동 정지를 시도하였다 시동 후 약 세 시간가량의 정력 부하 운전을 실시한 후 부하 변동을 실시하였고, 총 운전 시간 8시간 정도 운전한 후 시스템을 정지하였다 메탄 전환율과 일산화 탄소 농도, 열효율을 모니터링 하고 있으며, 현재까지 초기 성능을 그대로 유지하고 있다. 앞으로 일일시동-정지 운전 시험을 지속하면서 초기 시동 특성 및 부하 변동에 따른 응답 특성 개선, 그리고 연료전지와의 연계 운전을 실시할 예정이다

  • PDF

Performance Evaluation of a Cylindrical Steam Reformer with Various Thermal Conditions (원통형 수증기 개질기의 열적조건 변화에 따른 개질성능 평가)

  • Han, Hun Sik;Kim, Seo Young;Karng, Sarng Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.269-274
    • /
    • 2014
  • The experimental performance evaluation of a cylindrical steam reformer with various thermal conditions has been conducted. The bottom space of the cylindrical reactor was packed with Ruthenium (Ru) catalyst. A three-segment furnace was installed to create the axially variable boundary temperature distribution. Six K-type thermocouples were inserted into the catalyst layer, and three exhaust ports were fabricated on the side wall along the flow direction. The exhausted gases at each port were analyzed by using gas chromatograph (GC) system. The experimental results showed that the reforming reaction occurs intensively in the upstream region and more hydrogen is obtained when the intake gas is sufficiently heated up through the enhanced steam reforming (SR) reaction. The axially increasing boundary temperature setup provided the maximally accumulated reforming efficiency of 74.8%, when the reactor was placed at the 3rd section of the furnace.

Characteristic of Partial Oxidation of Methane and Ni Catalyst Reforming using GlidArc Plasma (GlidArc 플라즈마를 이용한 메탄 부분산화 및 Ni 촉매 개질 특성)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1268-1272
    • /
    • 2008
  • Low temperature plasma applied with partial oxidation is a technique to produce synthesis gas from methane. Low temperature plasma reformer has superior miniaturization and start-up characteristics to reformers using steam reforming or CO$_2$ reforming. In this research, a low temperature plasma reformer using GlidArc discharge was proposed. Reforming characteristics for each of the following variables were studied: gas components ratio (O$_2$/CH$_4$), the amount of steam, comparison of reaction on nickle and iron catalysts and the amount of CO$_2$. The optimum conditions for hydrogen production from methane was found. The maximum Hydrogen concentration of 41.1% was obtained under the following in this condition: O$_2$/C ratio of 0.64, total gas flow of 14.2 L/min, catalyst reactor temperature of 672$^{\circ}C$, the amount of steam was 0.8, reformer energy density of 1.1 kJ/L with Ni catalyst in the catalyst reactor. At this point, the methane conversion rate, hydrogen selectivity and reformer thermal efficiency were 66%, 93% and 35.2%, respectively.

A Study on the Heat Accumulation Performance of Ceramic Honeycomb located on the Flat Burner (Flat Burner 위에 설치된 Ceramic Honeycomb의 축열성능 연구)

  • Park, Jae-Min;Heo, Su-Bin;Yoon, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.244-249
    • /
    • 2012
  • Recently energy crisis and environmental pollution using fossil fuel became social issue. The Fuel Cell, one of the new and renewable energy has great advantage for the former mentioned problems. The PEM Fuel Cell needs highly purified hydrogen for fuel, in many cases CH4 was reformed to H2 basically using steam reforming. The purpose of this paper is to understand the probability of ceramic honeycomb to apply the combustor of STR. We tested the heat accumulation performance of ceramic honeycomb by change of excess air ratio. The results were suitable for our purpose and also these results can be used to make high temperature air at mild combustion field.

The Study of Model Biogas Catalyst Reforming Using 3D IR Matrix Burner (3D IR 매트릭스 버너에 의한 모사 바이오가스 촉매 개질 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.840-846
    • /
    • 2012
  • Global climate changes caused by $CO_2$ emissions are currently debated around the world; green sources of energy are being sought as alternatives to replace fossil fuels. The sustainable use of biogas for energy production does not contribute to $CO_2$ emission and has therefore a high potential to reduce them. Catalytic steam reforming of a model biogas ($CH_4:CO_2$ = 60%:40%) is investigated to produce $H_2$-rich synthesis gas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The ruthenium catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60% : 40%, $14.7L/g{\cdot}hr$ and $550^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ yield, $H_2$/CO ratio, CO selectivity and energy efficiency were 0.65, 2.14, 0.59, 51.29%.

Steam Reforming of Methane for Chemical Heat Storage As a Solar Heat Storage(Part 2. Parameters Effect on Methane Conversion) (화학축열을 통한 태양열 저장을 위한 메탄의 스팀개질 반응 특성(Part 2. 조업변수의 영향))

  • Yang, D.H.;Chung, C.H.;Han, G.Y.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.29-35
    • /
    • 2001
  • The chemical heat storage as the one way of utilization for high temperature solar energy was considered. The stram reforming reaction of methane was chosen for endothermic reaction. The reactor was made of stainless steel tube and it's dimension was 0.635 cm I.D. and 30 cm long, coiled tube because of the geometry requirement of solar receiver The effects of space velocity and reactants mole ratio on the methane conversion and CO selectivity were examined. From the experimental results, the optimum steam/methane mole ratio was determined.

  • PDF

Study on Methane Steam Reforming utilizing Concentrated Solar Energy -Part 1. In search of the best reaction condition for steam reforming of methane- (태양열을 이용한 메탄의 수증기 개질 반응기 연구 -Part 1. 수증기 개질 반응에서의 최적 반응 조건 탐색-)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.13-19
    • /
    • 2005
  • The reaction of steam reforming of methane with commercial catalysts was conducted for thermochemical heat storage. The reaction conditions were investigated for temperature range of 700 to $900\;^{\circ}C$ and steam to carbon mole ratios between 3.0 and 5.0. The reactor was made of stainless steel and it's dimension was 12 cm inside diameter and 6cm long. The effects of space velocity and reactants mole ratio and temperature on the methane conversion and CO selectivity were examined. Optimum reaction condition was determined. There was not a significant difference of methane conversion and CO selectivity compared to conventional reactor.

Heat and mass transfer characteristics in steam reforming reactor (수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구)

  • Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.56-63
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reforming reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. From various parametric studies, significance of heat transfer is emphasized in steam reforming reaction.

  • PDF