• Title/Summary/Keyword: 수중 항법

Search Result 50, Processing Time 0.032 seconds

A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters (소나 플랫폼의 운동 파라미터에 따른 합성개구소나 영상 왜곡의 정량적 분석)

  • Kim, Sea-Moon;Byun, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • Synthetic aperture sonars as well as side scan sonars or multibeam echo sounders have been commercialized and are widely used for seafloor imaging. In Korea related research such as the development of a towed synthetic aperture sonar system is underway. In order to obtain high-resolution synthetic aperture sonar images, it is necessary to accurately estimate the platform motion on which it is installed, and a precise underwater navigation system is required. In this paper we are going to provide reference data for determining the required navigation accuracy and precision of navigation sensors by quantitatively analyzing how much distortion of the sonar images occurs according to motion characteristics of the platform equipped with the synthetic aperture sonar. Five types of motions are considered and normalized root mean square error is defined for quantitative analysis. Simulation for error analysis with parameter variation of motion characteristics results in that yaw and sway motion causes the largest image distortion whereas the effect of pitch and heave motion is not significant.

A Study on Development of Technology System for Deep-Sea Unmanned Underwater Robot of S. Korea analysed by the Application of Scenario Planning (한국형 수중로봇시스템의 기술개발연구 - 시나리오플래닝 적용으로 -)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.27-40
    • /
    • 2013
  • This study is about development of technology system for an advanced deep-sea unmanned underwater robot of S. Korea analysed by the application of scenario planning. It was developed a 6000m class next-generation deep-sea unmanned underwater vehicle(or robot, UUV) system, soonly ROV 'Hemire' and Depressor 'Henuvy' in 2006 at S. Korea and motion control, adaptive control algolithm, a work-space manipulator control algolithm, especially the underwater inertial-acoustic navigation system robust to initial errors and sensor failures. But there are remained matters on position tracking of the USBL, inertial-acoustic navigation system, attitude sensor, designed sonar sensors. So this study suggest the new idea for settle the matters and then this idea help the development of the underwater inertial-acoustic navigation system robust to initial errors and sensor failures, such as acoustic signal drop-out, by modifying the error covariance of the failed sonar signal when drop-out occurs. As a result, the future policy for deep-sea unmanned underwater robot of S. Korea is to further spur the development of new technology and more improvement of the technology level for deep-sea unmanned underwater robot system with indicator and imaginary wall as external device.

Underwater Localization using RF Sensor and INS for Unmanned Underwater Vehicles (RF 센서와 INS을 이용한 UUV 위치 추정)

  • Park, Daegil;Kwak, Kyungmin;Jung, Jaehoon;Kim, Jinhyun;Chung, Wan Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 2017
  • In this paper, we propose an underwater localization scheme through the fusion of an inertial navigation system (INS) and the received signal strength (RSS) of electromagnetic (EM) wave sensors to guarantee precise localization performance with high sampling rates. In this localization scheme, the INS predicts the pose of the unmanned underwater vehicle (UUV) by dead reckoning at every step, and the RF sensors corrects the UUV position functions using the Earth-fixed reference when the UUV is located in underwater wireless sensor networks (UWSN). The localization scheme and state modeling were conducted in the extended Kalman filter framework, and UUV localization experiments were conducted in a basin environment. The scheme achieved reliable localization accuracy during long-term navigation, demonstrating the feasibility of exploiting EM wave attenuation as Earth-fixed reference sensors.

Submarine Free Running Model Development and Basic Performance Analysis (수중함 자유항주모형 개발 및 기본 성능 분석)

  • Jooho Lee;Seonhong Kim;Jihwan Shin;Jinhyeong Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.256-265
    • /
    • 2023
  • This paper describes the results of the development of the submarine Free Running Model (FRM). First, the goal of development was set based on the test conditions and the test environment, and the system was obtained accordingly. The target submarine, Joubert BB2 submarine, was selected with a scale of 18.35 in accordance with the development goal. In order to conduct a submarine FRM test underwater, where communication is impossible, the FRM must operate at least semi-autonomously. For this purpose, an Extended Kalman Filter (EKF) based underwater integrated navigation system and control system using a sailplane and an X-shaped sternplane were designed respectively. In addition, a ballast system was designed to enable the model to float to the water surface in case of an emergency. To verify its propulsion, navigation, and control performance, the FRM tests were conducted in both indoor and outdoor basins. As a result, the relationship between propeller RPM and vehicle speed was derived, and it was confirmed that the navigation and control performance met the target value.

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 2. Design and Implementation of Realtime Framework using Probabilistic Candidate Selection (소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 2. 확률적 후보 선택을 통한 실시간 프레임워크의 설계 및 구현)

  • Lee, Yeongjun;Kim, Tae Gyun;Lee, Jihong;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.164-173
    • /
    • 2014
  • In underwater robotics, vision would be a key element for recognition in underwater environments. However, due to turbidity an underwater optical camera is rarely available. An underwater imaging sonar, as an alternative, delivers low quality sonar images which are not stable and accurate enough to find out natural objects by image processing. For this, artificial landmarks based on the characteristics of ultrasonic waves and their recognition method by a shape matrix transformation were proposed and were proven in Part 1. But, this is not working properly in undulating and dynamically noisy sea-bottom. To solve this, we propose a framework providing a selection phase of likelihood candidates, a selection phase for final candidates, recognition phase and tracking phase in sequence images, where a particle filter based selection mechanism to eliminate fake candidates and a mean shift based tracking algorithm are also proposed. All 4 steps are running in parallel and real-time processing. The proposed framework is flexible to add and to modify internal algorithms. A pool test and sea trial are carried out to prove the performance, and detail analysis of experimental results are done. Information is obtained from tracking phase such as relative distance, bearing will be expected to be used for control and navigation of underwater robots.

DVL-RPM based Velocity Filter Design for a Performance Improvement Underwater Integrated Navigation System (수중운동체 복합항법 성능 향상을 위한 DVL/RPM 기반의 속도 필터 설계)

  • Yoo, Tae Suk;Yoon, Seon Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.774-781
    • /
    • 2013
  • The purpose of this paper is to design a DVL-RPM based VKF (Velocity Kalman Filter) design for a performance improvement underwater integrated navigation system. The proposed approach relies on a VKF, augmented by a altitude from Echo-sounder based switching architecture to yield robust performance, even when DVL (Doppler Velocity Log) exceeds the measurement range and the measured value is unable to be valid. The proposed approach relies on two parts: 1) Indirect feedback navigation Kalman filter design, 2) VKF design. To evaluate proposed method, we compare the results of the VKF aided navigation system with simulation result from a PINS (Pure Inertial Navigation System) and conventional INS-DVL method. Simulations illustrate the effectiveness of the underwater navigation system assisted by the additional DVL-RPM based VKF in underwater environment.

Odometer Error Compensation Scheme for Velocity-Aided Strapdown Inertial Navigation System : The Case of Torpedo (속도보정 스트랩다운 관성항법장치의 속도계오차 처리기법 : 수중항체의 경우)

  • Lee, Youn-Seon;Chung, Tae-Ho;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.401-406
    • /
    • 1992
  • When a velocity-aided strapdown inertial navigation system is loaded into a torpedo subjected to an extraneous force by the current, odometer measurement errors occur seriously. In order to compensate for navigation errors induced by large odometer biases, the Kalman Filter with separate bias estimator is applied, which separately estimates an unknown bias, and corrects the state estimate produced by the bias-free Kalman Filter to reflect the effect of the bias estimate.

  • PDF

Hydrodynamics Embedded Navigation Filter Design for Underwater Autonomous Systems (수중 자율이동시스템의 수력학 모델 내장형 항법필터 설계)

  • Kim, Eun-Chong;Lee, Yun-Ha;Jung, Young-Kwang;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1383-1384
    • /
    • 2015
  • In this paper, a dynamics model embedded navigation filter is newly suggested for underwater autonomous systems without position or attitude aid. In order to ensure the observability on the INS errors, the hydrodynamics of the underwater vehicle is incorporated with the INS attitude error. This approach allows us to estimate and compensate the INS errors in spite of using external velocity sensor. Through the simulation, the performance and effectiveness of the proposed scheme are demonstrated.

  • PDF

Sensor Fusion for Underwater Navigation of Unmanned Underwater Vehicle (무인잠수체의 수중항법을 위한 센서퓨전)

  • 주민근;서주노;송광섭;이판묵;홍석원;박영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.175-175
    • /
    • 2000
  • In this Paper we propose a navigation algorithm which can be used to estimate state vectors such as position and velocity for its motion control using multi-sensor output measurements. The output measurement we will use in estimating the state is a series of known multi-sensor asynchronous outputs with measurement noise. This paper investigates the Extended Kalman Filtering method to merge asynchronous heading, heading rate, velocity of DVL, and SSBL information to produce a single state vector. Different complexity of Kalman Filter, with biases and measurement noise, are investigated with theoretically data from KRISO's AUV. All levels of complexity of the Kalman Filters are shown to be much more close and smooth to real trajectories then the basic underwater acoustic navigation system comment)'used aboard underwater vehicle.

  • PDF

Model-Based Pose Estimation for High-Precise Underwater Navigation Using Monocular Vision (단안 카메라를 이용한 수중 정밀 항법을 위한 모델 기반 포즈 추정)

  • Park, JiSung;Kim, JinWhan
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.226-234
    • /
    • 2016
  • In this study, a model-referenced underwater navigation algorithm is proposed for high-precise underwater navigation using monocular vision near underwater structures. The main idea of this navigation algorithm is that a 3D model-based pose estimation is combined with the inertial navigation using an extended Kalman filter (EKF). The spatial information obtained from the navigation algorithm is utilized for enabling the underwater robot to navigate near underwater structures whose geometric models are known a priori. For investigating the performance of the proposed approach the model-referenced navigation algorithm was applied to an underwater robot and a set of experiments was carried out in a water tank.