• Title/Summary/Keyword: 수중 탐색

Search Result 53, Processing Time 0.02 seconds

Development of Synthetic Signal Generator and Simulator for Performance Evaluation in Multiple Sonobuoy System (다중 소노부이 체계의 신호합성기 및 성능검증용 시뮬레이터 개발)

  • Lee, Su Hyoung;Park, Sang Bae;Han, Sang-Gyu;Kown, Bum Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.11-22
    • /
    • 2021
  • Sonobuoy is widely used as a very important sensor in combat management system using P-3 patrol aircraft due to its advantages of rapid searching into wide exploration range. It is necessary to verify the performance of developed sonobuoy system using various maritime test data in order to be successfully applied in combat management system. But it is difficult to acquire various real maritime data because it needs much time and effort. Therefore we have developed in this paper a synthetic signal generator and a simulator that they can verify the performance of sonobuoy system and evaluate its operational effectiveness without conducting maritime test. We have synthesized target signals based on the characteristics of underwater sound sources, and then developed the synthesized signal generator which consider to sound propagation etc. like as underwater environment. And in the simulator development we use a HMI technique to enhance the convenience of operator, and design to verify the performance of sonobuoy system. The developed signal generator and simulator can be used as useful tools to evaluate the operational effectiveness such as optimal deployment of sonobuoy in combat management system using P-3 patrol aircraft.

Detection of Microcystin Synthetic Cyanobacteria and Variation of Intracellular Microcystin Synthesis Using by eDNA and eRNA in Freshwater Ecocystem (담수환경에서 eDNA와 eRNA를 이용한 Microcystin 합성 남조류 탐색 및 세포 내 Microcystin 생합성 활성 변화)

  • Keonhee Kim;Chaehong Park;Hyeonjin Cho;Daeryul Kwon;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Targeting Microcystin (MC), which is most abundantly detected in the North-Han River water area, we analyzed the relationship between the MC biosynthesis gene (mcyA gene), cyanobacteria cell density, and MC concentration, derived an RNA-MC conversion formula, and derived the cyanobacteria. The concentration of MC present in cells was predicted. In the North-Han River waters, the mcyA gene was found mainly at downstream sites of the North-Han River after Muk-Hyeon Stream junction, and higher copy numbers were found on average than other sites. In the Uiam Lake waters upstream of the North-Han River, the mcyA gene copy number increased at the Kong-Ji Stream point, and after September, the mcyA gene copy number decreased throughout the North-Han River waters. The expression of the mcyA gene was concentrated in the short period of summer due to the spatio-temporal difference between upstream and downstream water bodies. The mcyA gene expression level was not only highly correlated with MC concentration, but also correlated with the cell density of Microcystis aeruginosa and Dolichospermum circinale, which are known to biosynthesize MC. Six conversion formulas derived based on the RNA-MC relationship showed statistical significance (p<0.05) and exhibited high correlation coefficients (r) of 0.9 or higher. The expression level of MC biosynthesis gene present in eRNA determines the synthesis of cyanotoxin substances in water, quickly quantifies gene activity, and can be fully utilized for early warning of MC development.

Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources (질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향)

  • Tae-Heon Kim;Suk-Man Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • Nitrogen is a major and essential macronutrient for plant growth and development. However, excessive nitrogen application can lead to ecological pollution or greenhouse gas emissions, consequently resulting in climate change. In this study, we used 153 genetic resources of rice to evaluate the effects of the levels of nitrogen application on grain yield and yield-related traits. Significant differences were noted in the yield and yield-related traits of genetic resources between two nitrogen application levels, namely, 4.5 kg/10a (NN: normal nitrogen condition) and 9.0 kg/10a (LN: low-nitrogen condition). Among the tested traits, days to heading (DTH), clum length (CL), grain yield per plant (GYP), number of panicles per plant (NPP), and number of spikelets per panicle (NSP) decreased by 1.8 to 17.9% when the nitrogen application levels decreased from NN to LN. The 1,000-grain weight (TWG) and percentage of ripened grain (PRG) increased by 2.6 to 11.2% under these conditions. Based on nitrogen application levels, two-way analysis of variance (ANOVA) demonstrated significant differences in GYP, NPP, and PRG but not in NSP and TGW. NPP exhibited negative correlations with NSP (-0.44) and TGW (-0.44), and TGW displayed a negative correlation with PRG (-0.34), whereas, GYP exhibited a positive correlation with PRG (0.37) and NSP (0.38). A similar pattern was recorded under the LN condition. NPP, TGW, and PRG were clustered as PA (principle axis) 1 under the LN condition by factor analysis. NSP and GYP were clustered as PA (principle axis) 2. These results demonstrated NPP and NSP as the primary factors contributing to the decrease in grain yield under LN conditions. In conclusion, we selected eight genetic resources that exhibited higher GYP under both NN and LN conditions with higher NPP or NSP. These genetic resources can be considered valuable breeding materials for the adaptation of plants to nitrogen deficiency.