• Title/Summary/Keyword: 수중 추진

Search Result 91, Processing Time 0.033 seconds

Development of Underwater Thrusting System Driven by 300W Class BLDC Motor (300W급 BLDC모터 기반의 수중추진체 개발)

  • Choi, Hyeung-Sik;So, Myung-Ok;Park, Han-Il;Park, Warn-Gyu;Jang, Ha-Yong;Hong, Sung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1128-1134
    • /
    • 2010
  • This paper is about the development of the 300W underwater thrusting system driven by a brushless DC motor (BLDC) for underwater robots. A design of the structure such as the structure analysis on the thrusting system using FEM and the design of the propeller using the fluid analysis has been performed. Also, a new structure such as decoupling and non-gear structure has been explained. The performance test of the designed and developed thrusting system in water and in air was undertaken and its results were compared with an existing product with high performance. The comparison results show that the developed thrusting system has better performance by 16% in forward thrusting force and by 12% in backward thrusting force.

A Study of Hybrid Rocket for Underwater Operation (수중 운용을 위한 하이브리드 로켓 연구)

  • Woo, KyoungJin;Min, Moonki;Lee, Junghyun;Chu, Bokyoung;Lee, Seunghwan;Kim, Gyeongmin;Kim, Heuijoo;Kim, Jiman;Hwang, Heuiseong;Yoo, Youngjoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.144-147
    • /
    • 2017
  • A hybrid rocket engine capable of thrust throttling and underwater-working was developed for the underwater high-speed vehicle propulsion system. The hybrid rocket engine was designed and made by two types of ground test motor and underwater working motors. An engine performance was verified by the ground tests with the ground test motor and in the case of underwater motors the ground tests and underwater tests were performed. For the underwater operation a two-stage ignition system was adopted and a rupture disc was installed at the end of nozzle for a water-tight just before an ignition. Successful ignition and propulsion were confirmed in the underwater test with the final selected double rupture disc.

  • PDF

Analysis on Initial Stability Test Results of Underwater Vehicle Using the HR Propulsion System (HR추진기관을 이용한 수중운동체의 초기안정성 시험 결과 분석)

  • Hwang, Heeseong;Kim, Hakseong;You, Youngjoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1142-1143
    • /
    • 2017
  • In this paper, Underwater propulsion test of SWASH(Small Waterplane Area Single Hull) type underwater vehicle with hybrid rocket system is performed. Watertight structure is applied to prevent a combustion chamber from water, and the control logic is constructed by setting the watertight ignition sequence. As a results, It is confirmed that the ignition is stable in water, and the propulsion system works well along the configured control sequence.

  • PDF

수중 발사 유도탄의 기술 동향 분석

  • 장성택
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.23-23
    • /
    • 2000
  • 대표적인 잠수함 발사 유도탄의 수중에서의 발사 개념에 대한 기술 동향을 분석하였다. 세계 각 국의 수중 발사 유도탄 중 발사 형태가 특히 다른 Tomahawk, Sub Hapoon, Exocet SM39 유도탄에 대하여 그 발사 방법에 따른 기술 동향과 장단점을 비교 분석하였다. 대표적인 서방 세계 수중 발사 유도탄인 Tomahawk는 여러 가지 다른 형태가 있지만 잠수함 발사는 Wet Capsule에 의해 보호되며 어뢰 발사관을 이용하여 압축수에 의해 수중으로 배출되는데 잠수함과의 안전거리에서 견일줄이 유도탄 진행에 따라 장력을 발생 부스터를 점화시킨다. 이 부스터에 의해 수면까지 부상하며 부스터에 설치되어 있는 수중궤적 제어용 Jet-Tab이 수중운동을 제어한다. 수면에서 부스터의 추진력에 의해 대기로 진입하는데 일정속도 이상으로 가속된 후 부스터를 분리시키며 Turbo 엔진이 점화되어 계속 비행하게 된다.(중략)

  • PDF

Development of Underwater Rocket Propulsion System for High-speed Cruises (고속 주행을 위한 수중용 로켓추진기관 개발)

  • Kwon, Minchan;Yoo, Youngjoon;Heo, Junyoung;Hwang, Heeseong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.112-118
    • /
    • 2019
  • The development of an underwater rocket propulsion system was described in this paper. Throttle able liquid propellant and hybrid rocket propulsion systems were selected for underwater propulsion. A subscale liquid rocket combustion chamber and it's portable stand were developed and their applicability was examined. 1.5-ton.f and 1.8-ton.f hybrid rockets were developed for underwater applications. The test results indicated that the 18-ton.f hybrid rocket fully complies to the performance and underwater cruise stability requirements; thus, its development was concluded to be successfully complete.

Study on combustion characteristics of seawater-reactive solid propellant for underwater propulsion (수중추진을 위한 해수반응성 고체추진제의 연소특성에 관한 연구)

  • Park, Kilsu;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.128-130
    • /
    • 2017
  • $NaBH_4$ was added to improve the water reactivity of aluminum powder as a solid propellant for underwater propulsion. Aluminum powders showed different combustion characteristics depending on the amount of $NaBH_4$ added. When $NaBH_4$ was added, it was burned by reaction with water even at a temperature much lower than the boiling point. In this study, it was confirmed that $NaBH_4$ is an effective additive to accelerate the vapor reaction with Al powder.

  • PDF

Conceptual Design of An Underwater Vehicle Powered by Water-breathing Ramjet (해수흡입 램젯추진 수중운동체 개념설계)

  • Um, Jaeryeong;Lim, Hyunae;Jin, Wansung;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.50-60
    • /
    • 2014
  • Many countries are paying efforts to the research and development of water-breathing ramjet propulsion for submersible vehicle with the super-cavitation which makes traveling at high speed in underwater possible. In this study, a conceptual design of an underwater vehicle with water-breathing ramjet was carried out. Mission profiles and operating conditions are determined by examining the operation environment. Drag is estimated based on the theories of super-cavitation and fluid mechanics. The sizing and performance analysis of the components were performed using thrust required, thrust and specific impulse of designed engine were verified.

Measurement of Performance of High Speed Under Water Vehicle by Using Solid Rocket Motor(II) (로켓추진을 이용한 고속 수중운동체의 수중 주행성능 측정 결과(II))

  • Yoon, Hyun-Gull;Lee, Hoy-Nam;Cha, Jung-Min;Lim, Seol;Suh, Suhk-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.131-136
    • /
    • 2017
  • High speed under water vehicle by using solid rocket motor, which is a natural cavitation type, was tested. The vehicle's speed and running distance was measured, and pressure sensors installed on the surface of the vehicle show pressure-time history of pressures according to the development of the supercavitation. Underwater cameras installed on the wall of the test pool recorded whole processes from the onset of the supercavitation to fully developed one. CNU-SuperCT based on 2-dimensional inviscid theoretical analysis was used to simulate the test result. In consideration of CNU-SuperCT does not include the control fins of the vehicle, simulation results agree with test results very well. Also, pictures from underwater cameras support the test results.

  • PDF

Measurement of Performance of High Speed Underwater Vehicle with Solid Rocket Motor(II) (로켓추진을 이용한 고속 수중운동체의 수중 주행성능 측정 결과(II))

  • Yoon, Hyun-Gull;Lee, Hoy-Nam;Cha, Jung-Min;Lim, Seol;Suh, Suhk-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.12-17
    • /
    • 2018
  • A natural cavitation-type high-speed underwater vehicle with solid rocket motor is tested, and its speed and running distance are measured. The outputs from pressure sensors on the surface of the vehicle reveal a pressure-time history reflecting the development of supercavitation. Underwater cameras installed on the wall of the test pool record the entire process from the onset of supercavitation to its full development. CNU-SuperCT, based on two-dimensional inviscid theoretical analysis, is used to simulate test results. Considering CNU-SuperCT does not include the control fins of the vehicle, simulation results agree with test results very well. Additionally, pictures from underwater cameras support the test results.