• Title/Summary/Keyword: 수중 채널

Search Result 241, Processing Time 0.024 seconds

Design and Implementation of an Acoustic Modem for Small Underwater Devices Operating at Shallow Water (얕은 수심에서 동작하는 소형 수중 디바이스를 위한 음향 모뎀 설계 및 구현)

  • Jeon, Jun-Ho;Park, Sung-Joon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.110-117
    • /
    • 2012
  • As the demand for underwater systems providing pollution monitoring, marine ecosystem observation, surveillance monitoring is increased, acoustic modem for short-range underwater communication is spotlighted as one of significant research topics. Typically, in shallow water, it is so hard to analyze acoustic wave which undergoes spreading, absorption, reflection and scattering through transmission that there are limited advanced results. Furthermore, in order for the modem to be loaded in a fixed node or a moving vehicle in shallow water, its size should be small enough. In this paper, we address underwater acoustic channel model and design and implement an efficient micro acoustic modem which is adequate for short-range underwater communication. The developed modem is verified in a lake by varying working range and data rate up to 500 meters and 2 kbps, respectively.

An Optimal Space Time Coding Algorithm with Zero Forcing Method in Underwater Channel (수중통신에서 Zero Forcing기법을 이용한 최적의 시공간 부호화 알고리즘)

  • Kwon, Hae-Chan;Park, Tae-Doo;Chun, Seung-Yong;Lee, Sang-Kook;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.349-356
    • /
    • 2014
  • In the underwater communication, the performance of system is reduced because of the inter-symbol interference occur by the multi-path. In the recent years, to deal with poor channel environment and improve the throughput, the efficient concatenated structure of equalization, channel codes and Space Time Codes has been studied as MIMO system in the underwater communication. Space Time Codes include Space Time Block Codes and Space Time Trellis Codes in underwater communication. Space Time Trellis Codes are optimum for equalization and channel codes among the Space Time Codes to apply in the MIMO environment. Therefore, in this paper, turbo pi codes are used for the outer code to efficiently transmit in the multi-path channel environment. The inner codes consist of Space Time Trellis Codes with transmission diversity and coding gain in the MIMO system. And Zero Forcing method is used to remove inter-symbol interference. Finally, the performance of this model is simulated in the underwater channel.

Coherence Bandwidth and Coherence Time for the Communication Frame in the Underwater of East Sea (동해 천해환경에서 수중 통신 프레임 설계를 위한 상관 대역폭과 상관 시간의 산출)

  • Choi, Dong-Hyun;Kim, Hyeon-Su;Kim, Nam-Ri;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.365-373
    • /
    • 2010
  • For effective underwater digital communications, a frame structure is used, which includes pilots in time and frequency domains for channel estimation at a receiver. To estimate channel precisely, the each pilot should be located less than coherence time and coherence bandwidth. This paper measured underwater communication environments to provide coherence time and coherence bandwidth. Based on the measurement, the paper exhibits the calculated coherence time and coherent bandwidth is adequate by computer simulations.

Bit Split Method for Efficient Channel Estimation in UWA Channel (수중 다중경로 채널에서 효과적인 채널추정을 위한 비트 분리 방법)

  • Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won;Yong, Chun-Seung;Sohn, Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2207-2214
    • /
    • 2010
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed split input bits of channel decoder using method of maximum value, average value, LLR value for optimal estimation. Channel coding method is LDPC(N size=16000) standard in DVB-S2. As shown in simulation results, the performance of LLR value method is better than other methods.

An Efficient Receiver Structure Based on PN Performance in Underwater Acoustic Communications (수중음향통신에서 PN 성능 기반의 효율적인 수신 구조)

  • Baek, Chang-Uk;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.173-180
    • /
    • 2017
  • Underwater communications are degraded as a result of inter symbol interference in multipath channels. Therefore, a channel coding scheme is essential for underwater communications. Packets consist of a PN sequence and a data field, and the uncoded PN sequence is used to estimate the frequency and phase offset using a Doppler and phase estimation algorithm. The estimated frequency and phase offset are fed to a coded data field to compensate for the Doppler and phase offset. The PN sequence is generally utilized to acquire the synchronization information, and the bit error rate of an uncoded PN sequence predicts the performance of the coded data field. To ensure few errors, we resort to powerful BCJR decoding algorithms of convolutional codes with rates of 1/2, 2/3, and 3/4. We use this powerful channel coding algorithm to present an efficient receiver structure based on the relation between the bit error of the uncoded PN sequence and coded data field in computer simulations and lake experiments.

An Efficient Decoding Method for High Throughput in Underwater Communication (수중통신에서 고 전송률을 위한 효율적인 복호 방법)

  • Baek, Chang-Uk;Jung, Ji-Won;Chun, Seung-Yong;Kim, Woo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • Acoustic channels are characterized by long multipath spreads that cause inter-symbol interference. The way in which this fact influences the design of the receiver structure is considered. To satisfy performance and throughput, we presented consecutive iterative BCJR (Bahl, Cocke, Jelinek, Raviv) equalization to improve the performance and throughput. To achieve low error performance, we resort to powerful BCJR equalization algorithms that iteratively update probabilistic information between inner decoder and outer decoder. Also, to achieve high throughput, we divide long packet into consecutive small packets, and the estimate channel information of previous packets are compensated to next packets. Based on experimental channel response, we confirmed that the performance is improved for long length packet size.

A study on the short-range underwater communication using visible LEDs (근거리 수중통신을 위한 가시광 LED 적용에 관한 연구)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.425-430
    • /
    • 2013
  • Robust and high speed underwater communication is severely limited when compared to communications in terrestial. In free space, RF communication operates over long distances at high data rates. However, the obstacle in seawater is the severe attenuation due to the conducting nature. Acoustic modems are capable of long range communication up to several tens of kilometers, but it has low data-rate, high power consumption and low propagation speed. An alternative means of underwater communication is based on optics, wherein high data rates are possible. In this paper, the characteristics of underwater channel in the range of visible wavelength is investigated. And the possibility of optical wireless communication in underwater is also described. The LED-based transceiver and CMOS sensor module are integrated in the system, and the performance of image transmission was demonstrated.

Interface Effect Analysis between Undersea Fiber Optic Cable and Underwater Acoustic channel (수중 음향 채널의 해저 광케이블 간섭 효과 분석)

  • Im, Yo-Wung;Lim, Pil-Sub;Lee, Jeong-Gu;Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.979-986
    • /
    • 2015
  • Security solutions using fiber-optic cable have not yet secured a solid technical stability, through which the Acoustic detection security system also did not have a complete defense techniques such as false alarm and detecting fail due to a number of variables. In this paper, we investigate 4 characteristics for the channel of underwater acoustic communication. We also construct detection system as a construction method for security system using optical cable through the analysis of acoustic signal in underwater. We perform analysis of signal characteristics and noise of underwater optical cable, and then we confirms the possibility of real application.

Analysis of Time Reversal Transmission Performance for Underwater Communications (시역전 수중 디지털 통신 성능 분석)

  • Kim, Hyeon-Su;Kwon, Yang-Soo;Lee, Il-Shin;Chung, Jae-Hak;Kim, Seong-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.213-221
    • /
    • 2009
  • The time reversal mirror (TRM) method for underwater communications has been developed to improve transmission performance with low complexity. However, digital communication parameters for TRM have not been researched deeply. This paper demonstrates that the TRM scheme obtains spatial diversity gain similar to multiple antennas, and proposes design methodologies of symbol interval, frame duration and transmission protocol for time reversal mirror transmission. Simulation results show that spatial diversity gain is achieved and the effect of ISI decreases as the number of transducer increases.

A Study on the Characteristics of Underwater Sound Transmission by Short-term Variation of Sound Speed Profiles in Shallow-Water Channel with Thermocline (수온약층이 존재하는 천해역에서 단기간 음속구조 변화에 따른 음향 신호 전달 변동에 관한 연구)

  • Jeong, Dong-Yeong;Kim, Sea-Moon;Byun, Sung-Hoon;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.20-35
    • /
    • 2015
  • Underwater acoustic channel impulse responses (CIR) are influenced by sound speed profile (SSP), and the variation of CIR has significant effects on the performance of underwater acoustic communication systems. A significant change of SSP can occur within a short period, which must be considered during the design of underwater acoustic modems. This paper statistically analyzes the effect of the variation of SSP on the long-range acoustic signal propagation in shallow-water with thermocline using numerical modeling based on the data acquired from JACE13 experiment near Jeju island. The analysis result shows that CIR changes variously according to the SSP and the depth of the transmitter and receiver. We also found that when the transmitter and receiver are deeper, the variation of sound wave propagation pattern is smaller and signal level becomes higher. All CIR obtained in this study show that a series of bottom reflections due to downward refraction and small bottom loss in the shallow water with thermocline can be very important factor for long-range signal transmission and the performance of underwater acoustic communication system in time varying ocean environment can be very sensitive to the variation of SSP even for a short period of time.