• 제목/요약/키워드: 수중 용접

검색결과 36건 처리시간 0.018초

SMAW 수중 다층용접시 용접부 특성에 관한 연구 (A Study on the effect of the multi-pass SMAW welding on the characteristic of the underwater welding areas)

  • 최기용;이상율;이보영;이병훈;이상용;박성두
    • Journal of Welding and Joining
    • /
    • 제16권4호
    • /
    • pp.55-62
    • /
    • 1998
  • While excellent joint quality has been obtained using dry chamber underwater welding methods, the size limitations imposed by this process restrict its use for underwater construction work. The wet underwater shielded metal-arc welding eliminates this restriction but suffers from poor weld properties by the 1-pass bead-on-plate welding due to the excessive diffusible hydrogen. On the other hand, in the wet underwater welding, it is well known that the quantity of diffusible hydrogen in multi-pass welded parts reduce to less than that in 1-pass welded parts. Therefore, in this paper, welding experiments are made the 3-pass bead-on-plate welds by using TMCP and normalized steel plates and E4301 and cellulose coated electrode. After that, The amounts of the hydrogen absorbed into the 3-pass welded area were measured according to the JIS Z 3118 specification. The microstructural changes as well as the microhardness distribution after the underwater 3-pass welding were also investigated using Vickers microhardness tester and S.E.M and O.M. The results indicated that the quantity of diffusible hydrogen in 3-pass welded areas was reduced little less than a half of one of that in 1-pass welded areas at the specific welding condition. As a result, the cold cracking of 3-pass welded areas decreased by reduced effect of diffusible hydrogen. In the underwater 3-pass welding, the micrography of cold cracking fracture surface showed mainly the cleavage of hydrogen embrittlement.

  • PDF

가압경수로 원자로 압력용기 자동초음파검사 (Mechanized Ultrasonic Testing for PWR Reactor Pressure Vessel)

  • 박문호;김재희
    • 비파괴검사학회지
    • /
    • 제17권2호
    • /
    • pp.114-121
    • /
    • 1997
  • 가압경수로 원자로 압력용기 비파괴검사를 위해 지금까지 계속 사용하여 온 기존의 고정식 매니플레이터 방식의 원자로 자동초음파검사장비는 최근 급속도로 발전한 전자산업 및 컴퓨터 등으로 인해 기본 설계 개념부터 달리하는 소형.경량화된 수중 이동형 원자로 검사 장비 형태로 바뀌어 가고 있다. 따라서, 본 해설에서는 현재까지 국내외 알려진 각종 소형 원자로 압력용기 자동초음파검사장비 및 고정식 매니플레이터 방식의 원자로 압력용기 자동초음파검사장비를 분석하여 기술하였으며, 현재 국내 원자로 압력용기 용접부검사를 위해 개발중인 RYSIS 장비 및 검사 기술 수준을 진단해보고 앞으로의 방향을 제시하였다.

  • PDF

800MPa급 무예열 용접 판재의 수중 폭파변형시험 (Explosion Bulge Test Underwater of 800MPa Grade Pre-heat Free Welding Plate)

  • 박태원;송영범;김진영;양성호;박철규;서준석;김희진
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.63-69
    • /
    • 2010
  • The pre-heat free consumables for GMAW, SAW and FCAW processes that matche with the Cu-bearing PFS-700 steel which has yield strength over 700MPa were developed and evaluated to see the suitability in military such as submarine and battle ship. Explosion Bulge Test underwater was developed and applied to see the reliability of welded structure. All welding was conducted without pre-heat before welding, the interpass temperature was below $150^{\circ}C$ for all welding conditions. Tensile strength for the weld metal in GMAW, SAW and FCAW process is 887MPa, 875MPa and 813MPa, respectively, these values are similar to the base metal of PFS-700 steel of 838MPa. EBT results in GMAW, SAW and FCAW show 14.0%, 14.02% and 15.9% reduction of thickness without generation of crack, respectively and stand-off distance was set up properly to have over 14.0% reduction of thickness. Through EBT results, the developed new consumables are applicable to the weapon systems such as submarine and battle ship.

FBG 센서를 이용한 잔교식 안벽 구조물의 안전성 평가에 대한 연구 (A Study on the Safety Evaluation of the Landing Pier Structure Using FBG Sensor)

  • 이흥수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권2호
    • /
    • pp.44-50
    • /
    • 2019
  • 잔교식 안벽의 수중부는 접근이 쉽지 않아서 손상확인이 어려운 곳인데, 최근들어 태풍과 지진이 빈번하게 발생하고 있어 잔교식 안벽 수중부 구조물의 손상 누적으로 인한 붕괴가 우려되는 상황이다. 잔교식 안벽의 붕괴를 방지하고 체계적으로 유지관리하기 위한 방안으로 FBG 센서를 이용한 적용 방법과 안전성 평가 방법을 연구하였다. 잔교식 안벽에 파일로 사용되는 원형 강관에 대한 FBG 센서의 적용 방안을 확인하기 위해 실내실험을 실시하고, 센서를 용접하여 부착하는 방법으로 적용해야 하는 것을 확인하였다. 잔교식 안벽에 대한 구조해석을 수행하여 FBG 센서를 부착하기 위한 최적의 부착위치를 확인하였다. 고정하중에 대한 응력을 구조해석을 하여 계산하고, FBG 센서를 통해 얻은 데이터를 이용하여 활하중에 대한 응력을 계산한 다음에 두 응력을 더해서 파일에 작용하고 있는 응력을 계산하였다. 계산한 응력을 허용응력과 비교하여 파일의 안전성 평가를 수행하였다. 본 연구는 잔교식 안벽의 안전성을 실시간으로 평가하는 방안을 찾기 위한 기초 연구로 수행되었다.

선용 강판 수중용접부의 인장 구속 균열 특성에 관한 연구 (Study on the tensile restraint crack characteristics in underwater welds of marine steel plates)

  • 오세규;강문호;김민남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.45-52
    • /
    • 1987
  • Generally the factors affected largely by the cold cracking sensitivity of the weld are the quantity of the diffusible hydrogen, the brittleness and hardness of the bond area and the tensile restraint stress. These factors have relation each other, and if we can reduce one of these factors, it becomes instrumental to the root cracks prevention of weld. This study deals with the gravity type-underwater-welding of KR Grade A-3 marine steel plate using E4303 welding electrode in order to compare wet-underwater-welding with in-air- welding, resulting in obtaining the tensile restraint characteristics, the hardness distribution, the quantity of diffusible hydrogen and the macro- and micro-crack properties in both underwater and in-air welds. The main results obtained are as follows: 1) The quantity of diffusible hydrogen measured for 48 hours is about 18cc/100g-weld-metal for the in-air-weld of one pass and about 48cc/100g-weld-metal for the underwater-weld of one pass which is about 3 times penetration of diffusible hydrogen compairing with the case of the in-air-weld. However, it was experimentally confirmed that, by the multi-pass welding of 2 to 5 passes, the diffusible hydrogen in the underwater weld metal can be reduced as much as 27 to 49%. 2) The hardness of the weld metal indicates the highest value in the heat affected zones of underwater weld for more rapid cooling rate, resulting in the higher sensitivity of cold cracking. So, it is desirable to soften the higher hardness in the HAZ by tempering effect such as the multi-pass welding in the underwater welding. 3) At the bond vicinity of the underwater weld HAZ, micro cracks were found as resulted by both more rapid cooling rate and more diffusible hydrogen and also by the stress corrosion cracking under the tensile restraint stress in the underwater. But this could be prevented by the tempering effect of the following weld bead such as the multi-pass welding.

  • PDF

수중용접한 국산 SM41A-2강판의 편진반복 인장하중하의 피로강도특성에 관한 연구 (Study on tension-tension fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate)

  • 오세규;박주성;한상덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.71-81
    • /
    • 1987
  • Nowadays, the high development of industrial technique demands the optimal design of marine structures to be welded under the water, because the underwater welding of the ship hull and marine structures can decrease manpower and cost of production. However there is not available at present any report on fatigue behavior about underwater welded joints. In this paper under tention- tension repeated fatigue stress with frequency of 10 cycles per second by local controlled system, the fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate of 10 mm thickness were experimentally examined. The results obtained were as follows : 1) The fatigue strength of underwater welded joints of SM41A-2 was peaked at the heat input of about 1, 400 joule/mm(180 A, 36 V), while, at the heat input of more than about 1, 100 joule/mm (160 A, 33 V) that of the underwater welds at the higher than cycle of life rather than the lower cycle was higher than that of the base metal but lower than that of the atmosphere welds on account of both cooling and notch effects. 2) The fatigue limit of underwater welds increased with an increase of heat input resulting in a peak of that at the heat input of about 1, 400 joule/mm and then decreased gradually. 3) The fatigue strength at N cycles was peaked between the heat input of about 1, 400 and 1, 700 joule/mm where the strain was rapidly increased. 4) It was confirmed that the optimal zone of heat input condition for obtaining the underwater welds fatigue strength higher than that of the base metal exists, and if out of this zone, the fatigue strength of the underwater welds was lower than that of the base metal because of lack weld penetration, inclusion of slag, voids, etc. 5) By the fatigue test, the underwater welds fractured brittly without visual deformation, so the strain was remarkably less than of the atmosphere welds. 6) The fatigue life factor was peaked at the heat input of about 1, 600 joule/mm (200 A, 36 V) at which the mean strain is a little higher than that of the base metal but quite lower than those of the atmosphere welds, resulting in good underwater welds because both fatigue strength and ductility of the underwater welds are higher than those of the base metal at such heat input.

  • PDF