• Title/Summary/Keyword: 수중 부식질

Search Result 3, Processing Time 0.019 seconds

A Study on the Ozonation of Aquatic Humic Substances(AHS) Extracted from Soyang Lake Water (소양호에서 추출한 수중 부식질(AHS)의 오존처리에 대한 연구)

  • An, Bok-Yeop;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.453-461
    • /
    • 2000
  • Aquatic humic substance (AHS) was extracted from Soyang lake water using XAD-8 resin. and its concentration distribution in the lake from May to October. 1997 was determined. Ozonation characteristics of the AHS were studied as factors of pH, carbonate ion concentration. and the biodegradability and structural changes of the AHS were also investigated after ozonaticn. DOC distribution in Soyang Lake water was 1~3 mg/L. and the concentrations of AHS ranged between 0.2~0.8 mg/L. which was corresponding to 20~30% of DOC. AHS was composed of around 20% of HA and 80% of FA. The optimum pH value for AHS ozonation was in range of pH 7~9. When carbonate ions were added for AHS ozonation as a ladical scavenger. it was found that DOC removals were decreased. and the absorbance decreases were increased slightly. Biodegradability of the ozonized AHS was 50% higher than that of unozonated AHS. $^{13}C-NMR$ analysis showed that the aromatic compounds of AHS, after ozonation, were decreased from 49% to 17%. and the aliphatic and carboxylic compounds were increased from 34% to 51% and from 17% to 32%. respectively.

  • PDF

활성슬러지법에서 알루미늄 부식에 의한 인제거

  • 정경훈;최형일;정오진;이경희;강경환
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2000.05a
    • /
    • pp.130-131
    • /
    • 2000
  • 알루미늄판만 있는 경우보다 구리판이 첨가되었을 때 인 제거율은 높았으나 알루미늄판만 첨가하여도 수중의 인 제거가 가능하였고, 알루미늄판 표면적이 클수록 인제거 시간이 빨랐으며, 수중 전해질농도가 높을수록 인제거 시간은 단축되었고, 알루미늄판을 재 사용하였을 때는 구리판과 전해질 농도의 영향과는 상관없이 24시간만에 제거되었으며, 또한 비폭기시에는 공식이 일어나지 않아 인이 제거피지 않고 증가됨을 알 수 있었다. 또한 인이 제거되는 과정에서 COD와 질소 제거에는 영향을 주지 않음을 알 수 있었다.

  • PDF

Corrosion Rate of Structural Pipes for Greenhouse (온실 구조용 파이프의 부식속도 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2015
  • Because soils in reclaimed lands nearby coastal areas have much higher salinity and moisture content than soils in inland area, parts of greenhouses embedded in such soils are exposed to highly corrosive environments. Owing to the accelerated corrosion of galvanized steel pipes for substrucrture and structure of greenhouses in saline environments, repair and reinforcement technologies and efficient maintenance and management for the construction materials in such facilities are required. In this study, we measured the corrosion rates of the parts used for greenhouse construction that are exposed to the saline environment to obtain a basic database for the establishment of maintenance and reinforcement standards for greenhouse construction in reclaimed lands with soils with high salinity. All the test pipes were exposed to soil and water environments with 0, 0.1, 0.3, and 0.5% salinity during the observation period of 480 days. At the end of the observation period, salinity-dependent differences of corrosion rate between black-surface corrosion and relatively regular corrosion were clearly manifested in a visual assessment. For the soils in rice paddies, the corrosion growth rate increased with salinity (0.008, 0.027, 0.036, and $0.043mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively). The results for the soils in agricultural fields are 0.0002, 0.039, 0.040, and $0.039mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively. The higher corrosion rate of rice-paddy soil was associated with the relatively high proportion of fine particles in it, reflecting the general tendency of soils with evenly distributed fine particles. Hence, it was concluded that thorough measures should be taken to counteract pipe corrosion, given that besides high salinity, the soils in reclaimed lands are expected to have a higher proportion of fine particles than those in inland rice paddies and agricultural fields.