• Title/Summary/Keyword: 수중익 쌍동선

Search Result 4, Processing Time 0.018 seconds

Evaluation of Foil Strength by Full Scale Strain Measurement (실선 계측에 의한 수중익 강도 평가)

  • I.H. Choe;K.Y. Chung;O.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.37-43
    • /
    • 1995
  • The procedure and the results of the full scale strain measurement of the long-range high-speed foil catamaran are described. The wave induced stresses at the center struts of the foils were measured during the sea trials in order to evaluate the hydrodynamic force acting on the foils and to verify the structural safety of the foil structures. From the statistical properties of the measured response of the stress, the most probable maximum values of the lift force and the stresses at the foils in service life of the ship are predicted and compared with the design parameters of the foils which were applied in the design of the subject ship. The available prediction processes of the measured stress are studied and the results of the applied processes are compared with each other.

  • PDF

A Learning Method of LQR Controller Using Jacobian (자코비안을 이용한 LQR 제어기 학습법)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.34-41
    • /
    • 2005
  • Generally, it is not easy to get a suitable controller for multi variable systems. If the modeling equation of the system can be found, it is possible to get LQR control as an optimal solution. This paper suggests an LQR learning method to design LQR controller without the modeling equation. The proposed algorithm uses the same cost function with error and input energy as LQR is used, and the LQR controller is trained to reduce the function. In this training process, the Jacobian matrix that informs the converging direction of the controller Is used. Jacobian means the relationship of output variations for input variations and can be approximately found by the simple experiments. In the simulations of a hydrofoil catamaran with multi variables, it can be confirmed that the training of LQR controller is possible by using the approximate Jacobian matrix instead of the modeling equation and this controller is not worse than the traditional LQR controller.

A Learning Method of LQR Controller using Increasing or Decreasing Information in Input-Output Relationship (입출력의 증감 정보를 이용한 LQR 제어기 학습법)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.84-91
    • /
    • 2006
  • The synthesis of optimal controllers for multivariable systems usually requires an accurate linear model of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. This paper presents a novel loaming method for the synthesis of LQR controllers that doesn't require explicit modeling of the plant dynamics. This method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the LQR objective function. It becomes easier and more convenient because it is relatively very easy to get the sign of Jacobian instead of its Jacobian. Simulations involving an overhead crane and a hydrofoil catamaran show that the proposed LQR-LC algorithm improves controller performance, even when the Jacobian information is estimated from input-output data.

A Learning Method of PID Controller by Jacobian in Multi Variable System (다변수 시스템에서 자코비안을 이용한 PID 제어기 학습법)

  • 임윤규;정병묵
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • Generally, PID controller is not suitable to control multi variable system because it is very difficult to tune the PID gains. However, this paper shows that it is not hard to tune the PID gains if we can find a Jacobian matrix of the system. The Jacobian matrix expresses the ratio of output variations according to input variations. It is possible to adjust the input values in order to reduce the output error using the Jacobian. When the colt function is composed of error related terms, the gradient approach can tune the PID gains to minimize the function. In simulation, a hydrofoil catamaran with two inputs and two outputs is applied as a multi variable system. We can easily get the multi variable PID controller by the proposed teaming method. When the controller is compared with LQR controller, the performance is as good as that of LQR controller with a modeling equation.