• Title/Summary/Keyword: 수중이동체

Search Result 63, Processing Time 0.035 seconds

Underwater Moving Target Simulation by Transmission Line Matrix Modeling Approach (전달선로행렬 모델링에 의한 수중물체의 이동 시뮬레이션 방법에 대한 연구)

  • Park, Kyu-Chil;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1777-1783
    • /
    • 2013
  • We do research on the simulation of Doppler effect from a target's moving under the sea by Transmission Line Matrix modeling which is one of numerical methods on time domain. To implement the effect, the input signal was entered at a moving node according to a moving target's moving speed. The result had maximum 2.47% error compared with the theoretical value. And from simulation results with speed control of a moving target, we could also obtain resonable results within 0.63% error range.

Design and Implementation of an Acoustic Modem for Small Underwater Devices Operating at Shallow Water (얕은 수심에서 동작하는 소형 수중 디바이스를 위한 음향 모뎀 설계 및 구현)

  • Jeon, Jun-Ho;Park, Sung-Joon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.110-117
    • /
    • 2012
  • As the demand for underwater systems providing pollution monitoring, marine ecosystem observation, surveillance monitoring is increased, acoustic modem for short-range underwater communication is spotlighted as one of significant research topics. Typically, in shallow water, it is so hard to analyze acoustic wave which undergoes spreading, absorption, reflection and scattering through transmission that there are limited advanced results. Furthermore, in order for the modem to be loaded in a fixed node or a moving vehicle in shallow water, its size should be small enough. In this paper, we address underwater acoustic channel model and design and implement an efficient micro acoustic modem which is adequate for short-range underwater communication. The developed modem is verified in a lake by varying working range and data rate up to 500 meters and 2 kbps, respectively.

Analysis of 3D composited monitoring system using unmanned surface vehicle (무인 원격 이동체를 활용한 3차원 복합 모니터링 기술에 관한 연구)

  • Ho Soo Lee;Chang Hyun Lee;Young DO Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.86-86
    • /
    • 2023
  • 최근에 들어 환경보전과 지속가능한 하천관리의 중요성이 대두되고 있으며, 통합물관리에 있어 수리량과 수질을 연계한 통합 모니터링의 필요성이 커지고 있다. 수리량과 수질 분야에 대한 모니터링 기술은 지속적인 연구가 이루어져 왔으나, 각 분야의 개별적 연구로 인해 수리량과 수질을 통합하여 모니터링 하는 기술 개발은 미흡한 수준이다. 또한 수질 측정은 수질오염공정시험기준에 있는 채수 기준에 따라 채수하여 측정하고 있으며, 채수 지점은 하천의 수심별로 달리하여 정해진다. 수리 측정은 현장계측을 통한 2차원적 계측으로 진행하고 있어 수질 측정 시 채수지점과 수리 측정지점은 일치하지 않는다. 동일 지점에서의 수질과 수리량을 동시에 고려하고 있지 못한 모니터링은 본류와 지류의 혼합거동이 많은 국내 하천 특성을 반영하지 못한다. 또한 현재의 수질·수리 모니터링은 ADCP나 다항목수질측정기 같은 고가의 장비를 운영하며, 홍수기와 같은 고위험 계측 조건에서 인력을 통해 측정하고 있기에 고비용의 장비운영비와 인명 피해를 야기시키고 있다. 따라서 무인 원격 기술을 적용한 하천 모니터링 기술과 수질과 수리량의 데이터 연계를 통한 3차원 모니터링 기술의 확보는 하천관리에 있어 매우 필수적이다. 본 연구에서는 수중 무인 원격이동체인 ROV와 무인 원격이동체(USV)를 활용한 3차원 수질·수리 모니터링 기술 개발에 관한 연구를 수행하였다. 국내 하천 특성을 고려한 혼합거동을 분석하기 위해 ROV에 수중 GPS 장비와 수질센서를 부착시켜 수중 내 2차원으로 측정되는 수리량과 동일한 좌표를 가지는 수질자료를 계측하여 하천의 연직 분포와 수평적 분포를 통해 화학적 수리적 거동을 분석하여 하천의 3차원 혼합거동 양상을 판단할 수 있었다. 이와 같은 무인 원격이동체를 통한 3차원 수질·수리 모니터링 기술은 하천의 3차원 분석에서 수질·수리량 보간 자료로 활용 가능하며, 효율적인 모니터링을 통하여 하천 전반 및 통합물관리에 있어 크게 기여할 것이라 사료된다.

  • PDF

Range estimation of underwater vehicles using superimposed chirp signals (중첩된 처프 신호를 이용한 수중 이동체의 거리 추정)

  • Hyung-in Ra;Kyung-won Lee;Chang-hyun Youn;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.511-518
    • /
    • 2023
  • Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

3D localization of internal noise source based on Doppler effect (도플러 효과를 기반으로한 내부 소음원의 3차원 위치 추정)

  • Bae, Jung-Ho;Seong, Woojae;Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.310-318
    • /
    • 2016
  • This study deals with a method to localize a noise source occuring in a marine vehicle in a 3D environment. Even when access to the noise source is limited for a marine vehicle, such as a ship or a submarine in operation, the signal received on a hydrophone located elsewhere contains Doppler effected noise by moving relatively. This study suggests noise localization algorithm in 3D based on Doppler effect by moving marine vehicle. Using a known source mounted on the vehicle, the noise source was estimated by reducing the range of Doppler center and closest point of approach via the least square method. The algorithm was verified through various simulations and it was shown that the noise could be localized in 3D based on Doppler effect by employing two fixed hydrophones located at the vehicle's exterior points and a known reference signal generator located somewhere on the vehicle.

Study on Drag Reduction of Hyper-speed Underwater Vehicles (극초고속 수중운동체의 저항감소기법 연구)

  • Ahn, Byoung-Kwon;Lee, Chang-Sup;Kim, Hyoung-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.443-449
    • /
    • 2010
  • Recently underwater systems moving at hyper-speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of super-cavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT).

  • PDF

An Experimental Study on Electrical Energy Generation Based on Phase Change Materials for Application of Underwater Unmanned Vehicles (수중 무인 이동체 적용을 위한 상변화물질 기반의 전기 에너지 생성에 대한 실험적 연구)

  • Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2022
  • This study is an experimental study on how to use phase change materials(PCM) to generate electrical energy for long-term operation of underwater unmanned vehicles. The electrical energy generation method is a volume change and a pressure change that occur as a phase change material changes to a solid or liquid state according to temperature, and the change in pressure creates a flow of fluid to create electrical energy. Polyethylene glycol was used as a phase change material considering the temperature of the ocean. In addition, an electrical energy generating device that converts volume change into pressure at low temperature (1℃~2℃) in solid state and high temperature (21℃~25℃) in liquid state was fabricated. As a result of the experiment, the pressure change according to the phase change rapidly changed between 1 hour and 2 hours, and maintained a pressure of about 24MPa after 4 hours. Through this, it was confirmed that it can be used as a power source for underwater unmanned vehicles using phase change materials and temperature differences. In addition, it was found that a more improved design should be made in order to apply the phase change material to an underwater unmanned vehicle.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

Real time implementation of the auto depth control system for a submerged body (수중운동체 자동심도제어 시스템의 실시간 구현)

  • 이동익;조현진;최중락;이동권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.633-636
    • /
    • 1991
  • This paper describes the auto depth control system for underwater vehicle that can be used for both near surface and deeply submerged depthkeeping operations. This controller uses the fuzzy control algorithm and is implemented on the 16 bit microprocessor 8086 and coprocessor 8087. For verifying this system design, the digital simulator using PC-386 based T800 transputer is proto-totyped and the real time simulations show us satisfactory results.

  • PDF

Development of Biomimetic Underwater Vehicle using Single Actuator (단일 구동기로 수중 이동이 가능한 수중 이동체 개발)

  • Jun, Myoung Jae;Kim, Dong Hyung;Choi, Hyeun Seok;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.571-577
    • /
    • 2016
  • In this paper, we propose a novel propulsion method for a Biomimetic underwater robot, which is a bio-inspired approach. The proposed propulsion method mimics the pectoral fins of a real fish. Pectoral fins of real fish are able to propel and change direction. We designed the propulsion mechanism of 1 D.O.F. that has two functions (propel and change direction). We named this propulsion system 'Flipper'. The proposed propulsion method can control forward, pitch and yaw motion using the Flipper. We made an experimental underwater robot system and verified the proposed propulsion method. We measured its maximum speed and turning motion using an experimental underwater robot system. We also analyzed the thrust force from the maximum speed, using the thrust equation. Experimental results showed that our propulsion method enabled the thrust system of the biomimetic robot.