• Title/Summary/Keyword: 수중음향채널 대역폭

Search Result 18, Processing Time 0.025 seconds

Underwater Acoustic Channel Bandwidth and its Effects on BFSK/BPSK Performance (수중음향채널의 대역에 따른 BFSK/BPSK 전송 성능)

  • 박지현;윤종락;박규칠
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1243-1249
    • /
    • 2004
  • In this paper, the multipath effect on underwater acoustic channel bandwidth and BFSK and BPSK bit error dependancy on channel bandwidth are analyzed. The multipath is modeled as a discrete multipath and a continuous multipath and the channel bandwidth is expressed as a function of multipath delay spread constant. Bit error characteristics on the channel bandwidth and the criteria of the multipath delay spread constant are found through the numerical simulation. The transmission bit rate of less than 100bps in the water tank which has a channel bandwidth of 100Hz, is a consistent result with the numerical simulation.

Coherence Bandwidth and Coherence Time for the Communication Frame in the Underwater of East Sea (동해 천해환경에서 수중 통신 프레임 설계를 위한 상관 대역폭과 상관 시간의 산출)

  • Choi, Dong-Hyun;Kim, Hyeon-Su;Kim, Nam-Ri;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.365-373
    • /
    • 2010
  • For effective underwater digital communications, a frame structure is used, which includes pilots in time and frequency domains for channel estimation at a receiver. To estimate channel precisely, the each pilot should be located less than coherence time and coherence bandwidth. This paper measured underwater communication environments to provide coherence time and coherence bandwidth. Based on the measurement, the paper exhibits the calculated coherence time and coherent bandwidth is adequate by computer simulations.

Analysis of a fixed source-to-receiver underwater acoustic communication channel parameters in shallow water (송수신기가 고정된 천해 수중음향통신 채널 매개변수 해석)

  • Bae, Minja;Park, Jihyun;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.494-510
    • /
    • 2019
  • Underwater acoustic communication channel parameters consist of impulse response, delay spreading, scattering function, coherence bandwidth, frequency selective fading, coherence time and time variant magnitude fading statistics on which communication system modem and channel coding are designed. These parameters are influenced by sound velocity profile, platform motion and sea surface roughness in given acoustical oceanography condition. In this paper, channel model based on phasor, channel simulator, measurement and analysis method of channel parameters are given in a fixed source-to-receiver system and the parameters are analyzed using shallow water experimental data. For two different source-to-receiver ranges of 300 m and 600 m, the parameters are characterized by three multipaths such as a direct, a surface reflection path with time variant scattering and a bottom reflection path. The results present a channel modelling method of a fixed source source-to-receiver system, channel parameters measurement and analysis methods and a system design and performance assessment method in shallow water.

Performance Evaluation of Underwater Acoustic Communication in Frequency Selective Shallow Water (주파수 선택적인 천해해역에서 수중음향통신 성능해석)

  • Park, Kyu-Chil;Park, Jihyun;Lee, Seung Wook;Jung, Jin Woo;Shin, Jungchae;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • An underwater acoustic (UWA) communication in shallow water is strongly affected by the water surface and the seabed acoustical properties. Every reflected signal to receiver experiences a time-variant scattering in sea surface roughness and a grazing-angle-dependent reflection loss in bottom. Consequently, the performance of UWA communication systems is degraded, and high-speed digital communication is disrupted. If there is a dominant signal path such as a direct path, the received signal is modeled statistically as Rice fading but if not, it is modeled as Rayleigh fading. However, it has been known to be very difficult to reproduce the statistical estimation by real experimental evaluation in the sea. To give an insight for this scattering and grazing-angle-dependent bottom reflection loss effect in UWA communication, authors conduct experiments to quantify these effects. The image is transmitted using binary frequency shift keying (BFSK) modulation. The quality of the received image is shown to be affected by water surface scattering and grazing-angle-dependent bottom reflection loss. The analysis is based on the transmitter to receiver range and the receiver depth dependent image quality and bit error rate (BER). The results show that the received image quality is highly dependent on the transmitter-receiver range and receiver depth which characterizes the channel coherence bandwidth.

Effect of Text Transmission Performance on Delay Spread by Water Surface Fluctuation in Underwater Multipath Channel (수중 다중경로 채널에서 수면변동에 의한 지연확산이 텍스트 전송성능에 미치는 영향)

  • Park, Ji-Hyun;Kim, Jong-Wook;Yoon, Jong-Rak
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, a water tank experiment using Binary Frequency Shift Keying (BFSK) method for text transmission performance by water surface fluctuation is conducted. Water surface fluctuation and delay spread which affect the channel coherence bandwidth is a limiting factor in underwater acoustic communication. The amplitude fluctuation and delay spread the smooth surface and fluctuation surface, were identified. The effective delay spread of both cases are 5ms, 4ms corresponding to the coherence bandwidth of 200Hz, 250Hz, respectively. The bit error rate of BFSK modulated text transmission is about $10^{-4}$ in less than 200bps in smooth surface but less than 250bps in fluctuation surface. Therefore, this experiment shows that the water surface fluctuation is important factor determining the performance of the underwater acoustic transmission.

Analysis of underwater acoustic communication channel environment in Kyungcheon Lake (경천호에서의 수중 음향 통신 채널 환경 분석)

  • Kim, Yong-Cheol;An, Jong-Min;Lee, Ho-Jun;Lee, Sang-Kug;Chun, JaeHak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This paper estimated communication parameters according to underwater channel environment of lake for underwater acoustic communication. This paper calculated coherence time and coherence bandwidth through two experiments in actual lake environments. In both experiments, the chirp signal for channel estimation and the BPSK (Binary Phase Shift Keying) signal for calculating the bit error rate were transmitted. In each experiment, the distance between transmitter and receiver was 300 m to 400 m, and 500 m to 600 m. The coherence times calculated in experiment 1 and experiment 2 are 175 msec and 340 msec, and the coherence bandwidths are 10 Hz and 5.71 Hz, respectively. It is confirmed that the experimental results are more appropriate because the synchronization and the bit error rate performance are better only when the length of the synchronization signal and the interval of the pilot signal in the frame are shorter than the coherence time.

Shallow Water Acoustic Communication Channel Characteristic Analysis Using PN Sequence with 25 kHz Carrier at the Shore of Geojea Island (25 kHz 대역에서 PN 신호열을 이용한 거제 천해역 수중음향통신 채널 특성 분석)

  • Kim, Jae-Gap;Kim, Sea-Moon;Lim, Young-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.381-389
    • /
    • 2007
  • In this paper, the measuring method of underwater acoustic communication channel characteristics in the shallow water using the autocorrelation characteristic of PN sequence and the undorwater communication channel analysis results from the received signal sample data are described. For measuring the underwater acoustic communication channel characteristics, two PN sequences are used as a transmitted data of I-channel and Q-channel of QPSK symbol and QPSK signal is transmitted with symbol rate of 5 kHz and carrier frequency of 25 kHz. In the receiver the received signal, which pass through 675 m and 1492 m, is sampled and then stored. Using the stored sample data, the scattering function, coherent time, delay power profile, spaced-tone autocorrelation function, delay spread, and coherent bandwidth of each propagation distance cases are analyzed. Based on the analysis results, several guidelines are suggested for the design and implementation of underwater transmission system.

Performance Analysis of a Trellis coded 4-CPFSK over an Statistical Underwater Acoustic Channel (통계적 수중음향 채널에서 트렐리스 부호화된 4-CPFSK의 성능분석)

  • Kang, Hee-hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.140-145
    • /
    • 2017
  • A channel is very sever in an underwater acoustic communication. Therefore, a modulation method with high spectrum efficiency is needed in an underwater acoustic communication. PSK(phase shift keying) for transmitting 1 bit or 2 bits is robust to noise, but sensitive to noise about more than 3 bits. CPFSK error performance for transmitting 1 bit or 2 bits is similar to that of PSK and CPFSK decreases high frequency components in modulation signal. In the paper, I analyze the performance of trellis coded 4-CPFSK modulation.

Performance of Convolution Coding Underwater Acoustic Communication System on Frequency Selectivity Index (주파수 선택 지표에 따른 길쌈 부호 수중 음향 통신 시스템의 성능 평가)

  • Seo, Chulwon;Park, Jihyun;Park, Kyu-Chil;Shin, Jungchae;Jung, Jin Woo;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.494-501
    • /
    • 2013
  • The convolution code(CC) of code rate 1/2 as a forward error correction (FEC) in Quadrature Phase Shift Keying (QPSK) is applied to decrease bit error rate (BER) by background noise and multipath in shallow water acoustic channel. Ratio of transmitting signal bandwidth to channel coherence bandwidth is defined as frequency selectivity index. BER and bit energy-to-noise ratio gain of transmitted signal according to frequency selectivity index are evaluated. In the results of indoor water tank experiment, BER is well matched theoretical results at frequency selectivity index less than about 1.0. And bit energy-to-noise ratio gain is also matched theoretical value of 5 dB. BER is effectively decreased at frequency selective multipath channel with frequency selectivity index higher than 1.0. But bit energy-to-noise ratio greater than a certain size in terms of CC weaving is effective in reducing bit errors. In the results, the defined frequency selectivity index in this study could be applied to evaluate a performance of CC in multipath channel. Also it could effectively reduced BER in a low speed underwater acoustic communication system without an equalizer.

An Efficient Decoding Method for High Throughput in Underwater Communication (수중통신에서 고 전송률을 위한 효율적인 복호 방법)

  • Baek, Chang-Uk;Jung, Ji-Won;Chun, Seung-Yong;Kim, Woo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • Acoustic channels are characterized by long multipath spreads that cause inter-symbol interference. The way in which this fact influences the design of the receiver structure is considered. To satisfy performance and throughput, we presented consecutive iterative BCJR (Bahl, Cocke, Jelinek, Raviv) equalization to improve the performance and throughput. To achieve low error performance, we resort to powerful BCJR equalization algorithms that iteratively update probabilistic information between inner decoder and outer decoder. Also, to achieve high throughput, we divide long packet into consecutive small packets, and the estimate channel information of previous packets are compensated to next packets. Based on experimental channel response, we confirmed that the performance is improved for long length packet size.