• Title/Summary/Keyword: 수중음속

Search Result 51, Processing Time 0.024 seconds

Feasibility of Ocean Survey by using Ocean Acoustic Tomography in southwestern part of the East Sea (동해 남서해역에서 해양음향 토모그래피 운용에 의한 해양탐사 가능성)

  • Han, Sang-Kyu;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.75-82
    • /
    • 1994
  • The ray paths and travel times of sound wave in the ocean depend on the physical properties of the propagating media. Ocean Acoustic Tomography(OAT), which is inversely estimate the travel time variations between fixed sources and receivers the physical properties of the corresponding media can he understood. To apply ocean survey technology by using the OAT, the tomographic procedure requires forward problem that variation of the travel times be identified with the variability of the medium. Also, received signals must be satisfied the necessary conditions of ray path stability, identification and resolution in order for OAT to work. The canonical ocean has been determined based on the historical data and its travel time and ray path are used as reference values. The sound speed of canonical ocean in the East Sea is about 1523 m/s at the surface and 1458 m/s at the sound channel axis(400m). Sound speeds in the East Sea are perturbed by warm eddy whose horizontal extension is more than 100 km with deeper than 200 m in depth scale. In this study, an acoustic source and receiver are placed at the depth above the sound channel axis, 350 m, and are separated by 200 km range. Ray paths are identified by the ray theory methed in a range dependent medium whose sound speeds are functions of a range and depth. The eigenray information obtained from interpolation between the rays bracketing the receiver are used to simulate the received signal by convolution of source signal with the eigenray informations. The source signal is taken as a 400 Hz rectangular pulse signal, bandwidth is 16 Hz and pulse length is 64 ms. According to the analysis of the received signal and identified ray path by using numerical model of underwater sound propagation, simulated signals satisfy the necessary conditions of OAT, applied in the East Sea.

  • PDF

Implementation of underwater visible light communication system interlinked with bluetooth (블루투스와 연동하는 수중 가시광 통신 시스템의 구현)

  • Kim, Min-Soo;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.923-928
    • /
    • 2014
  • Communication underwater is severely limited when compared to communications in air because water is essentially opaque to electromagnetic radiation except in visible range. Acoustic systems are capable of long range communication, but offer limited data rates and significant latency due to the speed of sound in water. On the other hand, optical wireless communication has been proposed as one of the best alternatives to meet the requirements of the underwater observation and subsea monitoring systems. It will help In this study, we are developing an underwater optical communication system that integrates with a depot ship floating on the water. An interface between LED lighting communication system and Bluetooth module is presented to support the underwater-to-air communications. Error free image and text transmission at 3 m of water were achieved at bit rates of 230.4 kbps. This development effort will enhance infrastructure to efficiently interconnect between underwater wireless systems and command ship networks for underwater monitoring.

Depth dependence of the low frequency propagation loss for the sea surface noise sources (저주파 수면소음원에 의한 전파손실의 수심에 따른 변화)

  • Na, Jeong-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.48-53
    • /
    • 1987
  • The depth dependent sound fields have been calculated for a single frequency source to reveal the fluctuating sound energy at both near the surface and the bottom of the water layer. Those fluctuation are mainly due to the mode function behavior along the depth where the sound-speed gradient acts like trapping lower mode sound energy in those medium.

  • PDF

Underwater Sound Propagation in a range-dependent Shallow water environment (비균질한 천해에서의 수중음파 전파)

  • Na, Jeong-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.64-73
    • /
    • 1987
  • Low frequency sound propagation in a range-dependent shallow water environment of the Korea Strait has been studied by using the adiabatic coupled mode, ADIAB. The range-dependent environment is unique in terms of horizontal variations of sound velocity profiles, sediment thickness and attenuation coefficients and water depths. For shallow source and receiver depths, the most important mechanism involved in the propagation loss is the depth changing character of mode functions that strongly depends on the local sound velocity profile. Application of the adiabatic coupled mode theory to shallow water environment is reasonable when higher modes are attenuated due to bottom interaction effects. Underwater sound propagation in a range-dependent shallow-water environment.

  • PDF

Doppler effects of Transmission sign진 from Moving Target (움직이는 표적 전달신호의 도플러 효과)

  • Jin Un-Hwan;Na Jungyul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.101-104
    • /
    • 2000
  • 본 논문은 중거리 수중표적이 고정 설치된 수신기에 접근 시 표적신호의 다중경로에 신호변형을 일으키며, 특히 신호의 변형 중 도플러효과를 변화정도를 신호모의를 동하여 분석하였다. 동해의 동계와 하계의 대표적인 음속구조에 따른 고유음선(eigenray)의 도플러 주파수를 계산하였다. 수중표적의 속도는 12노트, 주파수는 135Hz, 350Hz, 신호는 정현파로 가정하여 신호모의를 하였다. 그 결과 해저면 반사가 한번인 음선은 수신신호에 주로 Vp-doppler를 형성하였고 두 번인 음선은 주로 Down-doppler를 형성하였다.

  • PDF

Minimization of short range shadow zone using HMS vertical scanning method (HMS(Hull Mounted Sonar) Vertical Scanning 기법을 이용한 근거리 음영구역 최소화)

  • Han Yunhoo;Lim Sehan;Oh Imsang;Kim Seongil;Na Jungyul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.437-440
    • /
    • 2004
  • HMS(Hull Mounted Sonar) 운용 시 수중음속구조의 영향에 의한 음파가 경계면(해저면, 해수면)의 반사를 통해서 근거리 음영구역(short range shadow zone)을 발생시킨다(그림 1). 따라서 본 논문에서는 다양한 수중음파탐지 무기체계 가운데 특히 단상태 (monostatic) 조건일 때 HMS에 의해 발생하는 근거리 음영구역을 최소화하는 방안을 연구하였다. 즉, 2차원 수중공간 (수심-거리)에서 빔형성기법 (beamforming)을 이용한 HMS Vertical Scanning (HMS Verscan) 기법을 제안하여 수치 실험을 수행하였다. 수치실험을 위해 HMS 운용환경에 근접한 고주파 음선모델(BELLHOP)과 잔향음 모델(HYREV)을 이용하였다. 그 결과 HMS Verscan 기법은 수평방향의 음파방사에 의해 주로 발생하는 근거리 음영구역으로 해저반사를 통하여 음파를 전달시켰고, 근거리 음영 구역에 숨어있는 표적의 탐지가능성을 높였다. 또한 실제 산란환경을 고려한 수치실험 결과에서도 부분적으로 표적이 탐지가 됨으로써 HMS Verscan 기법의 근거리 음영구역의 감소효과를 확인하였다.

  • PDF

The Effect of Internal Waves on Acoustic Propagation (수중 음 전달에 대한 내부파의 영향)

  • 최병호;성우제;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.46-52
    • /
    • 2000
  • Internal waves existing in the stratified ocean significantly affect acoustic propagation. In order to understand the effects of internal waves on acoustic propagation, the sound speed fluctuations due to internal waves are generated based on the Garrett-Munk spectrum which is derived from measured data in the East Sea. The acoustic propagation, where internal waves are present, is simulated numerically using a Galerkin higher order parabolic equation method(SNUPE). These results show favorable comparison to in-situ acoustic propagation data from the East Sea. To investigate the effects of acoustic propagation in random media, scintillation index is adopted and comparison between the measured and numerically simulated data is made.

  • PDF

Report of East Sea Crossing by Underwater Glider (수중 글라이더를 이용한 동해 횡단 사례 보고)

  • Park, Yo-Sup;Lee, Shin-Je;Lee, Yong-Kuk;Jung, Seom-Kyu;Jang, Nam-Do;Lee, Ha-Woong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.130-137
    • /
    • 2012
  • The underwater glider using conception of Lagrangian method, is a new observation platform to understand the properties of the ocean vertically. In 2011 March, KORDI made a first successful autonomous trip from Hupo to west coast of Uleungdo piloting Littoral Glider of Alaska Native Technology LLC. The journey considered many environmental variables and route vigilantly selected, the glider covered 177 km horizontally and took approximately 6 days (153 hours). Despite the existence of 1 kt eddy current, Sound velocity sampling was conducted from 5 meters and reaching maximum of 200 meters depth at each dive. It successfully collected sound velocity and temperature profile at every 5 seconds totaling up to 1408 profiles using SVT&P sensor. During the flight it was also a mission to check the diverse modes of the glider i.e. spiral, waypoints, heading, drift and hover could function without a defect in a given situation. These modes were thoroughly monitored and it could be considered that the glider handled it well during the flight. As a result of this test flight, it was evident that the given underwater glider could operate under 2kt current environment with users defined heading and depth, also with the payload up to 5 kg without changing internal buoyancy.

Analysis of a fixed source-to-receiver underwater acoustic communication channel parameters in shallow water (송수신기가 고정된 천해 수중음향통신 채널 매개변수 해석)

  • Bae, Minja;Park, Jihyun;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.494-510
    • /
    • 2019
  • Underwater acoustic communication channel parameters consist of impulse response, delay spreading, scattering function, coherence bandwidth, frequency selective fading, coherence time and time variant magnitude fading statistics on which communication system modem and channel coding are designed. These parameters are influenced by sound velocity profile, platform motion and sea surface roughness in given acoustical oceanography condition. In this paper, channel model based on phasor, channel simulator, measurement and analysis method of channel parameters are given in a fixed source-to-receiver system and the parameters are analyzed using shallow water experimental data. For two different source-to-receiver ranges of 300 m and 600 m, the parameters are characterized by three multipaths such as a direct, a surface reflection path with time variant scattering and a bottom reflection path. The results present a channel modelling method of a fixed source source-to-receiver system, channel parameters measurement and analysis methods and a system design and performance assessment method in shallow water.

A study on temperature dependent acoustic receiving characteristics of underwater acoustic sensors (수중음향센서 수온 변화에 따른 음향 수신 특성 변화 연구)

  • Je, Yub;Cho, Yohan;Kim, Kyungseop;Kim, Yong-Woon;Park, Saeyong;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.214-221
    • /
    • 2019
  • In this paper, a temperature dependent acoustic receiving characteristics of underwater acoustic sensor is studied by theoretical and experimental investigations. Two different types (low mid frequency sensor and high frequency sensor) of underwater acoustic sensors are designed with different configuration of baffle and conditioning plate. The temperature dependent characteristics of the acoustic sensors are investigated within the temperature range from $-2^{\circ}C$ to $35^{\circ}C$. The material properties of the piezoelectric ceramics, molding and baffle, which are the primary materials of the acoustic sensors, are measured with temperature change. The temperature dependent RVS (Receiving Voltage Sensitivity) characteristics of the acoustic sensors are simulated by using the measured material properties. The RVS changes of the acoustic sensors are measured by changing temperature in the watertank where the acoustic sensors are installed. The measured and the simulated data show that the temperature dependent characteristics of the acoustic sensors are mainly dependent for the sound speed changes of the molding material.