• Title/Summary/Keyword: 수중방사소음

Search Result 90, Processing Time 0.027 seconds

A Calculation Method of Source Level of Underwater Transient Noise by Frequency Band (주파수 대역별 수중 순간소음 음원준위 산출 기법)

  • Choi, Jae-Yong;Oh, Jun-Seok;Lee, Phil-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.528-533
    • /
    • 2010
  • This paper describes a calculation method of source level of a ship transient noise, which is one of the important elements for the ship detection. Aim of transient noise measurements is to evaluate of acoustic energy due to singular occurrence, which is therefore defined as non-periodic and short termed events like an attack periscope, a rudder and a torpedo door. In generally, in the case of randomly spaced impulse, the spectrum becomes a broadband random noise with no distinctive pattern. Therefore, frequency analysis is not particularly revealing for type of signal. In the paper, it is performed in time domain to analyze a transient noise. However, a source level of transient noise is required an investigation for multiple frequency band. So, in order to calculate a source level of transient noise, a design of exponential weighting function, convolution, band pass filtering, peak detection, root mean square, and parameter compensation are applied. The effectiveness of this calculation scheme is studied through computer simulations and a sea test. Furthermore, an application of the method is applied in a real case.

A Numerical Analysis on the ascoutic radiation efficiency of a stiffend cylindrical structure in underwater under multi-excitation (다중가진을 받는 수중 원통구조물의 방사효율에 대한 수치해석)

  • Kang, Myunghwan;Yi, Jongju;Han, Seungjin;Bae, Sooryong;Jung, Woojin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.372-376
    • /
    • 2014
  • This study is on acoustic radiation efficiency of a tiffened cylindrical model in water-multi-excitation with phase difference using commercial numerical program ABAQUS and SYSNOISE. When the stiffened cylindrical model is under multi-excitation with phase difference, the surface vibration field is variated with phase difference of excitation. By this different surface vibration field, the acoustic radiation efficiency is also variated with phase difference of excitation.

  • PDF

Contribution analysis of underwater radiation noise source using partial coherence function (부분상관 함수를 이용한 수중방사소음 소음원 기여도 분석)

  • Kim, Tae Hyeong;Choi, Jae Yong;Oh, Jun Seok;Kim, Seong Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • In this paper, contribution analysis method using a partial coherence function is dealt with in the case of underwater radiation noise. When performing the contribution analysis using a partial coherence function, it is important to select the order of system input. But in the case of frequency correlated systems, it is very difficult to properly select the order of system input. In order to solve this problem, the contribution analysis is performed by subdividing the area of contribution using multiple coherence function. And the new contribution analysis method is presented by using the relationship between the contribution characteristic matrix and multiple coherence function. In order to validate the new method, calculation is performed about multi-input / single-output model which is composed of sine waves. The result of calculation shows that it is possible to derive the exact contribution values.

Study on the analysis of model propeller tip vortex cavitation inception (모형 추진기 날개 끝 보텍스 캐비테이션 초생분석 연구)

  • Seol, Hanshin;Kim, Seong-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.387-395
    • /
    • 2018
  • In this study, the noise characteristics of the propeller tip vortex cavitation and its inception were analyzed experimentally. Generally, tip vortex cavitation is the first appeared cavity that occurs in a propeller. If propeller tip vortex cavitation is appeared, the level and characteristics of underwater radiated noise changes dramatically compared with the non-cavitating propeller. Therefore, it is very important to analyze the noise characteristics of the propeller cavitation and to detect the cavitation inception in the development of the propulsion system for military vessel and underwater weapon system. The change of noise characteristics due to the inception and growth of the propeller tip vortex cavitation was analyzed. Various imaging-noise measurement and analysis technique were used to determine the inception of propeller cavitation.

Detection of low frequency tonal signal of underwater radiated noise via compressive sensing (압축센싱 기법을 적용한 선박 수중 방사 소음 신호의 저주파 토널 탐지)

  • Kim, Jinhong;Shim, Byonghyo;Ahn, Jae-Kyun;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Compressive sensing allows recovering an original signal which has a small dimension of the signal compared to the dimension of the entire signal in a short period of time through a small number of observations. In this paper, we proposed a method for detecting tonal signal which caused by the machinery component of a vessel such as an engine, gearbox, and support elements. The tonal signal can be modeled as the sparse signal in the frequency domain when it compares to whole spectrum range. Thus, the target tonal signal can be estimated by S-OMP (Simultaneous-Orthogonal Matching Pursuit) which is one of the sparse signal recovery algorithms. In simulation section, we showed that S-OMP algorithm estimated more precise frequencies than the conventional FFT (Fast Fourier Transform) thresholding algorithm in low SNR (Signal to Noise Ratio) region.

함정 음향 스텔스 설계를 위한 소음 진동 기술

  • 전재진
    • Journal of KSNVE
    • /
    • v.12 no.6
    • /
    • pp.423-428
    • /
    • 2002
  • 사회가 산업화되면서 생활 제품의 고부가가치를 창출하기 위하여 소음 진동 분야의 많은 연구가 활발히 진행되고 있으며, 그 결과 인간 사회의 생활이 매우 윤택해지고 있다. 생활 수준의 향상으로 소음 진동 분야의 기술은 자동차, 항공기, 철도차량 등의 운송기계 분야에서 인간 사회의 안락한 분위기 창출에 중요한 역할을 담당하고 있으며, 더욱 중요한 환경 기술로 대두되고 있다. 이러한 소음 진동 기술은 군사 기술에서는 사용자의 편이성 확보뿐만 아니라. 무기체계의 성능 향상 측면에서 다양하게 이용되고 있으며, 최첨단의 기술을 주도하고 있다. 무기체계에서 소음 진동 기술은 육군, 공군 무기체계 뿐만 아니라 특히 정보 전달매체로 음향 에너지를 이용하는 해군 무기체계에서는 소음 진동으로 비롯되는 수중 방사소음 형태로 상대방의 탐지체계에 노출을 저하시키려는 생존성 측면에서 중요한 부분을 차지하고 있으며, 요사이 회자되고 있는 스텔스 기술의 중요한 위치를 차지하고 있다.(중략)

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate Considering the Noise of Multi-bubbles (다중기포 발생소음을 고려한 무한평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Heo, Bo-Hyun;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1222-1230
    • /
    • 2009
  • A theoretical model was developed to compute the effect of a bubble layer in reducing the radiation noise generated by a force applied on an infinite flat plate considering the noise of multi-bubbles. Using the model, the effectiveness of a bubble layer in reducing the structure-borne noise of the plate was evaluated to consider various parameters such as the source noise levels, the thickness of bubble layers, the volume fractions and the frequency characteristics of bubbly fluids. Considering the noise of multi-bubbles, the actual reduction effect of radiation noise using a bubble layer was expected in cases of high source levels, high volume fractions of bubbles and large thickness of the bubble layer above the resonance frequency of the bubble layer. Accordingly, it is recommended that the thickness of a bubble layer, the source noise level and the characteristics of bubbly fluids should be optimized cautiously to maximize noise reduction effects.

Comparative Study on Viscous and Inviscid Analysis of Partial Cavitating Flow for Low Noise Propeller Design (저소음 프로펠러 설계를 위한 부분공동 유동의 점성 및 비점성 수치해석 비교 연구)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Park, Cheol-Soo;Kim, Gun-Do
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.358-365
    • /
    • 2014
  • When a ship propeller having wing type sections rotates at high speed underwater, local pressure on the blade decreases and various types of the cavitation inevitably occur where the local pressure falls below the vapor pressure. Fundamentally characteristics of the cavitation are determined by the shapes of the blade section and their operating conditions. Underwater noise radiated from a ship propeller is directly connected to the occurrence of the cavitation. In order to design low noise propeller, it is preferentially demanded to figure out key features: how the cavity is generated, developed and collapsed and how the effect of viscosity works in the process. In this study, we first perform inviscid analysis of the partial cavity generated on two dimensional hydrofoil. Secondly, viscous analysis using FLUENT with different turbulence and cavitation models are presented. Results from both approaches are also compared and estimated.

Effect of Airborne Noise from Ship Machinery on Underwater Noise (선박의 장비 공기소음이 수중소음에 미치는 영향)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.569-574
    • /
    • 2011
  • In research vessels or naval ships, airborne noise from machineries such as diesel engine is the major source of underwater noise at low speed. In this paper, effect of engine noise on underwater noise is studied by considering two paths; sound radiation from hull plate and direct airborne noise transmission through hull plate. SEA (Statistical energy analysis) is used to predict hull plate vibration induced by engine noise, where SEA model consists of only two subsystems; engine room air space and hull plate. The pressure level in water is calculated from sound radiation by plate. Engine noise transmission through hull plate is obtained by assuming plane wave propagation in air-limp plate-water system. Two effects are combined and compared to the measurement, where speaker is used as a source in engine room and sound pressure levels in engine room and water are measured. The hydrophone is located 1 m away from the hull plate. It is found below 1000 Hz, prediction overestimates underwater sound pressure level by 5 to 12 dB.

Acoustic radiation from resiliently mounted machinery in fluid loaded infinite cylindrical shell with periodic ring supports (보강 원통형 쉘에 탄성 지지된 기계류에 의한 수중 음향 방사)

  • Bae, Soo Ryong;Jung, Woo Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.644-649
    • /
    • 2014
  • Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring supports. Transmitted force from machine to a shell can be different by the impedance of shell. In this paper the transmitted force from machinery to a infinite shell through vibration isolator is considered by the impedance of shell. The effect of the shell impedance for acoustic radiation is investigated.

  • PDF