• Title/Summary/Keyword: 수정된 열전도방정식

Search Result 4, Processing Time 0.026 seconds

A Comparative Study between Green's Function Method and Fourier Transform Method in Determining Thermal Wave Characteristics (열전도파 특성을 위한 Green's 함수법과 Fourier 변환법의 비교 연구)

  • Park, S.K.;Lee, Y.H.;Lim, J.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.16-24
    • /
    • 2000
  • 고체내의 열에너지의 전달을 분석하기 위하여 고전적인 Fourier 열전도 법칙과 에너지 보존식에서 유도되는 열전도 방정식을 사용해 왔다. 이러한 열전도 방정식은 열전도가 무한한 속도로 진행된다는 것을 의미하고 있다. 그러나 극저온상태에서나 매우 급속한 열전도과정 중 매우 짧은 시간의 상태에서 non-Fourier 모델에 기초를 둔 쌍곡선형 열전도 방정식이 도입되었다. 최근의 이에 관한 연구에서 열전도가 파장의 형태로 유한한 전파속도를 갖는다는 것이 실험적으로 증명되었고 이로부터 여러 가지 실험적인 해석과 이론 해석이 전개되었다. 본 논문에서는 열전파 속도의 유한한 성질을 나타내는 수정된 열전도 법칙을 이용하여 1차원 평판에 대하여 공간에 대한 finite Fourier 변환 방법과 Green 함수 방법으로 해석하여 열전도파의 파동 성질, 공진 현상 및 위상차를 고찰하고자 한다. 열전도파가 갖는 모달 주파수에 대해 임계값을 갖으며 이 임계값을 초과할 때 공진 현상과 위상차를 고찰할 수 있었다.

  • PDF

Numerical method of hyperbolic heat conduction equation with wave nature (파동특성을 갖는 쌍곡선형 열전도방정식에 관한 수치해법)

  • 조창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.670-679
    • /
    • 1998
  • The solution of hyperbolic equation with wave nature has sharp discontinuties in the medium at the wave front. Difficulties encounted in the numrtical solution of such problem in clude among oth-ers numerical oscillation and the representation of sharp discontinuities with good resolution at the wave front. In this work inviscid Burgers equation and modified heat conduction equation is intro-duced as hyperboic equation. These equations are caculated by numerical methods(explicit method MacCormack method Total Variation Diminishing(TVD) method) along various Courant numbers and numerical solutions are compared with the exact analytic solution. For inviscid Burgers equa-tion TVD method remains stable and produces high resolution at sharp wave front but for modified heat Conduction equation MacCormack method is recommmanded as numerical technique.

  • PDF

Analysis of Hyperbolic Heat Conduction in a Thin Film (박막에서 쌍곡선형 열전도 방정식에 의한 열전도 해석)

  • 정우남;이용호;조창주
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.540-545
    • /
    • 1999
  • The classical Fourier heat conduction equation is invalid at temperatures near absolute zero or at very early times in highly transient heat transfer processes. In such situations, a hyperbolic equation model for heat conduction based on the modified Fourier law is introduced because the wave nature of heat propagation becomes dominant. The Fourier model and the hyperbolic model for heat conduction are analyzed by using the Green's function technique together with the integral transform. Analytical expressions for the heat flux and temperature distributions in a finite slab subjected to a periodic surface heating at one of its surfaces are presented and the results obtained from each model are compared with each other. The thermal wave implied b the hyperbolic model is shown to travel through a medium and to reflect back toward the origin at the other insulated surface. On the other hand, the heat by the Fourier model propagates at an infinite speed instantaneously after a thermal disturbance is felt throughout the medium.

  • PDF

A Study on the temperature Distributions at the Vicinity of a Very Fast Moving Heat Source (매우 빠르게 움직이는 열원 주위의 온도분포에 관한 연구)

  • Cho, Chang-Joo;Juhng, Woo-Nam;Lee , Yong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.162-169
    • /
    • 1999
  • Fourier heat conduction law becomes invalid for the situations involving extremely short time heating, very low temperatures and fast moving heat source(or crack), since the wave nature of heat propagation becomes dominant. For these conditions, the modified heat conduction equation with the finite propagation speed of heat in the medium could be applied to predict heat flux and temperature distributions. In this study, temperature distributions at the vicinity of a very fast moving heat source are investigated numerically. Thermal fields are characterized by thermal Mach numbers(M) defined as the ratio of moving heat source speed to heat propagation speed in the solid. In the transonic and supersonic ranges($M{\ge}1$), thermal shocks are shown, which separate the heat affected zone from the thermally undisturbed zone.

  • PDF