• Title/Summary/Keyword: 수정규칙

Search Result 274, Processing Time 0.024 seconds

A Rule Extraction Method Using Relevance Factor for FMM Neural Networks (FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법)

  • Lee, Seung Kang;Lee, Jae Hyuk;Kim, Ho Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.5
    • /
    • pp.341-346
    • /
    • 2013
  • In this paper, we propose a rule extraction method using a modified Fuzzy Min-Max (FMM) neural network. The suggested method supplements the hyperbox definition with a frequency factor of feature values in the learning data set. We have defined a relevance factor between features and pattern classes. The proposed model can solve the ambiguity problem without using the overlapping test process and the contraction process. The hyperbox membership function based on the fuzzy partitions is defined for each dimension of a pattern class. The weight values are trained by the feature range and the frequency of feature values. The excitatory features and the inhibitory features can be classified by the proposed method and they can be used for the rule generation process. From the experiments of sign language recognition, the proposed method is evaluated empirically.

Error-driven Noun-Connection Rule Extraction for Morphological Analysis (오류에 기반한 복합명사 좌우접속규칙 사전 구축)

  • Lee, Kong Joo;Lee, Songwook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1123-1128
    • /
    • 2012
  • The goal of this research is to develop an error-driven noun-connection rules which is used for breaking complicate nouns in Korean morphology analysis module. We collected complicate nouns from Web sites, and analyzed them by CnuMa. Whenever we find errors from outputs of the analyzer, we write noun-connection rules to correct the errors. The noun-connection rules are devised by considering left/right contexts in compound nouns. The error-driven noun-connection rules are helpful in improving precision and recall of a Korean morphology analyzer, CnuMa by 2.8% and 10.8%, respectively.

Learning of Rules for Edge Detection of Image using Fuzzy Classifier System (퍼지 분류가 시스템을 이용한 영상의 에지 검출 규칙 학습)

  • 정치선;반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.252-259
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection of a image. The FCS is based on the fuzzy logic system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. There are two different approaches, Michigan and Pittsburgh approaches, to acquire appropriate fuzzy rules by evolutionary computation. In this paper, we use the Michigan style in which a single fuzzy if-then rule is coded as an individual. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. The proposed method is evaluated by applying it to the edge detection of a gray-level image that is a pre-processing step of the computer vision. the differences of average gray-level of the each vertical/horizontal arrays of neighborhood pixels are represented into fuzzy sets, and then the center pixel is decided whether it is edge pixel or not using fuzzy if-then rules. We compare the resulting image with a conventional edge image obtained by the other edge detection method such as Sobel edge detection.

  • PDF

Part-of-Speech Tagging Using Complemental Characteristics of Linguistic Knowledge and Stochastic Information (언어 지식과 통계 정보의 보완적 특성을 이용한 품사 태깅)

  • Lim, Heui-Seok;Kim, Jin-Dong;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.102-108
    • /
    • 1997
  • 기존의 품사 태깅 방법에서 독립적으로 사용해온 언어 지식과 통계 정보는 품사 태깅의 정확도와 처리 범위의 향상을 위해서 상호 보완적인 특성을 갖는다. 이에 본 논문은 언어 지식과 통계 정보의 보완적 특성을 이용한 규칙 우선 직렬 품사 태깅 방법을 제안한다. 제안된 방법은 언어 지식에 의한 품사 태깅 결과를 선호함으로써 규칙 기반 품사 태깅의 정확도를 유지하며, 언어 지식에 의해서 모호성이 해소되지 않은 어절에 통계 정보에 의한 품사 태깅 결과를 할당함으로써 통계 기반 품사 태깅의 처리 범위를 유지한다. 또한, 수정 언어 지식에 의해 태깅 결과의 오류를 보정함으로써 품사 태깅의 정확도를 향상시킨다. 약 2만 어절 크기의 외부 평가 코퍼스에 대해 수행된 실험 결과, 규칙 우선 직렬 품사 태깅 시스템은 통계 정보만을 이용한 품사 태깅의 정확도보다 32.70% 향상된 95.43%의 정확도를 보였다.

  • PDF

Korean Analysis and Transfer in Unification-based Multilingual Machine Translation System (통합기반 다국어 자동번역 시스템에서의 한국어 분석과 변환)

  • Choi, Sung-Kwon;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.301-307
    • /
    • 1996
  • 다국어 자동번역이란 2개국어 이상 언어들간의 번역을 말한다. 기존의 다국어 자동번역 시스템은 크게 변환기반 transfer-based 방식과 피봇방식으로 분류될 수 있는데 변환기반 다국어 자동번역 시스템에서는 각 언어의 분석과 생성 규칙이 상이하게 작성됨으로써 언어들간의 공통성이 수용되지 못하였고 그로 인해 전체 번역 메모리의 크기가 증가하는 결과를 초래하였었다. 또한 기존의 피봇방식에서는 다국어에 적용될 수 있는 언어학적 보편성 모델을 구현하는 어려움이 있었다. 이러한 기존의 다국어 자동번역 시스템의 단점들을 극복하기 위해 본 논문에서는 언어들간의 공통성을 수용하며 또한 여러 언어에서 공유될 수 있는 공통 규칙에 의한 다국어 자동번역 시스템을 제안하고자 한다. 공통 규칙의 장점은 전산학적으로는 여러 언어에서 단지 한번 load 되기 때문에 전체 번역 메모리의 크기를 줄일 수 있다는 것과 언어학적으로는 문법 정보의 작성.수정.관리의 일관성을 유지할 수 있다는 것이다.

  • PDF

Semantic Network Automatic Clustering Method of the Unified Medical Language System Using Genetic Algorithm (유전자 알고리즘을 이용한 통합의학언어시스템(UMLS)의 의미망 자동 군집 방법)

  • 지영신;김태준;전혜경;정헌만;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.82-84
    • /
    • 2003
  • UMLS 의미망은 크기가 방대하고 복잡하여 사용자가 이해하기가 어렵고 화면상에 모든 의미망을 모두 표현할 수 없다는 단점을 가지고 있다. 이 문제를 해결하기 위해 의미망을 효율적으로 분할하기 위한 규칙들이 소개되고 있지만 이것은 UMLS 의미망이 수정될 때마다 규칙을 적용하여 수작업으로 분류를 해야한다는 단점이 있다. 이 문제점을 해결하기 위해 유전자 알고리즘을 이용한 UMLS 의미망의 자동 군집화 방법을 제안한다. 제안한 방법은 각각의 의미유형 간의 연결된 의미관계를 사용하여 의미망을 구조적으로 유사한 의미유형 집합들로 군집화하고 규칙에 의한 군집 방법의 결과 비교 평가한다.

  • PDF

Performance Improvement of the Intelligent System for the Fire Fighting Control using Rule-based and Case-based Reasoning by Clustering in a Ship (규칙 및 클러스터링에 의한 사례기반 추론을 이용한 지능형 선박 화재진압통제시스템의 성능 개선)

  • Hyeon, U-Seok
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.263-270
    • /
    • 2002
  • Most conventional systems of fire fighting control in a ship have been based on rule-based system in which expert knowledges are expressed with production rules. Renewing and adding of rules is needed continuously for the improvement of the system capability in an already build-up system and such adding and renewing procedures could hinder users from fluent utilization of a system. The author proposes an advanced fire fighting control intelligent system (A-FFIS) using rule-based and carte-based reasoning by clustering to implement conventional hybrid system (H-FFIS). Compared with H-FFIS, new approach with A-FFIS shows that the system proposed here improves fire detection rate and reduces fire detection time.

PRAiSE: A Rule-based Process-centered Software Engineering Environment (PRAiSE : 규칙 기반 프로세스 중심 소프트웨어 공학 환경)

  • Lee, Hyung-Won;Lee, Seung-Iin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.246-256
    • /
    • 2005
  • Rule-based paradigm is one of the principal types of software process modeling and enaction approaches, as they provide formality and flexibility sufficient to handle complex processes. However, the systems adopting rule-based paradigms are hard to define and understand process models, and their inference engine should be modified or redeveloped at worst according to the change of process language. In this paper, we describe a rule-based PSEE(Process-Centered Software Engineering Environment) PRAiSE that solves the above limitations of existing rule-based PSEEs as well as maintains the merits of rule-based paradigm such as the ability to incorporate the nature of software processes flexibly in which dynamic changes and parallelism are pervasive and prevalent. PRAiSE provides RAiSE, a graphical Process modeling language, and defined process models are interpreted and enacted by process engine implemented using CLiPS, a rule based expert system tool.

Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal (자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차 전략 최적화)

  • Kim, Jeong-Min;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.218-219
    • /
    • 2011
  • This paper focuses on dispatching strategy for AGVs(Automated Guided Vehicle). The goal of AGV dispatching problem is allocating jobs to AGVs to minimizing QC delay and AGV total travel distance. Due to the highly dynamic nature of container terminal environment, the effect of dispatching is hard to predict thus it leads to frequent modification of dispatching results. Given this situation, single rule-based approach is widely used due to its simplicity and small computational cost. However, single rule-based approach has a limitation that cannot guarantee a satisfactory performance for the various performance measures. In this paper, dispatching strategy based on multicriteria heuristics is proposed. Proposed strategy consists of multiple decision criteria. A muti-objective evolutionary algorithm is applied to optimize weights of those criteria. The result of simulation experiment shows that the proposed approach outperforms single rule-based dispatching approaches.

  • PDF

Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal (자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차전략 최적화)

  • Kim, Jeong-Min;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryul
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.501-507
    • /
    • 2011
  • This paper focuses on dispatching strategy for AGVs(Automated Guided Vehicle). The goal of AGV dispatching is assigning AGVs to requested job to minimizing the delay of QCs and the travel distance of AGVs. Due to the high dynamic nature of container terminal environment, the effect of dispatching is hard to predict thus it leads to frequent modification of dispatching decisions. In this situation, approaches based on a single rule are widely used due to its simplicity and small computational cost. However, these approaches have a limitation that cannot guarantee a satisfactory performance for the various performance measures. In this paper, dispatching strategy based on multicriteria heuristics is proposed. The Proposed strategy consists of multiple decision criteria. A multi-objective evolutionary algorithm is applied to optimize weights of those criteria. The result of simulation experiment shows that the proposed approach outperforms single rule-based dispatching approaches.