• Title/Summary/Keyword: 수작업 방식

Search Result 170, Processing Time 0.032 seconds

PDA System for Maximizing the Efficiency of Smart Pallet Based Rarts Delivery System (스마트 파렛트 기반 부품공급시스템의 운영 효율성 증대를 위한 PDA 시스템)

  • Lee, Young-Du;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.115-120
    • /
    • 2010
  • Products companies, which manufactures finished goods with modular parts, will expect that the proper parts should be delivered to assembly line not only just in time (JIT) but also just in sequence (JIS) and also expect that faulty goods will not be produced due to the delivery of wrong parts. In order to satisfy the above requirements, recently Smart Pallet based Parts Delivery system (SPPD) was proposed. SPPD system can overcome the drawback of bar code based part delivery system in which much time for checking proper and in sequence parts is wasted due to labors' working in hand as well as the drawback of RFID based part delivery system in which recognition distance of RFID is very limited. In the paper, a PDA system is proposed and further implemented to maximize the efficiency of SPPD's operation as well as to manage the limited power of smart pallets efficiently.

Semi-Supervised Answer Type Classification For Question-Answering System (질의 응답 시스템을 위한 반교사 기반의 정답 유형 분류)

  • Park, Seonyeong;Lee, Donghyeon;Kim, Yonghee;Ryu, Seonghan;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.45-49
    • /
    • 2013
  • 기존 연구에서는 질의 응답 시스템에서 정답 유형을 분류하기 위해 패턴 매칭 방식이나 교사 학습(Supervised Learning)을 이용했다. 패턴 매칭 방식은 질의 분석을 통해 수동으로 패턴을 구축해야 한다. 교사 학습에서는 훈련 데이터 전체에 정답 유형이 태깅(Tagging)되어야 하며, 이를 위해서는 사용자의 질의에 정답 유형을 수동으로 태깅하는 작업이 많이 필요하다. 웹을 통해 정답 유형이 태깅되지 않은 대용량의 사용자 질의 말뭉치를 구할 수 있지만, 이 데이터에는 정답 유형이 태깅되어 있지 않다. 따라서, 대용량의 사용자 질의에 비례하여, 정답 유형을 수동으로 태깅하는 작업량이 증가한다. 앞서 언급한 두 가지 방법론에서, 정답 유형 분류를 위해 수작업이 많이 필요하다는 문제점을 해결하고자 본 논문에서는 일부 태깅된 훈련 데이터를 필요로 하는 반교사 학습(Semi-supervised Learning)에 기반한 정답 유형 분류를 제안한다. 이는 정답 유형 분류 작업에 필요한 노동력을 최소화함으로 대용량의 데이터를 통한 효율적 질의 응답 시스템 구축을 가능하게 한다.

  • PDF

An Approach to Automatically Generating Infobox for Wikipedia in Cross-languages through Translation and Webgraph (번역과 웹그래프를 활용한 언어 간 위키피디아 인포박스 자동생성 기법)

  • Kim, Eun-Kyung;Choi, DongHyun;Go, Eun-Bi;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.9-15
    • /
    • 2011
  • 여러 언어로 작성되는 위키피디아의 경우 언어 간에 등록되어 있는 정보의 양과 내용이 달라 언어 간 정보를 상호 추출하고 서로 통합하는 연구에 대한 관심이 증가하고 있다. 특히, 위키피디아의 요약본으로써 의미가 있는 인포박스는 위키피디아 아티클에 존재하는 구조화된 정보 중 가장 근간이 되는 정보로, 본 논문에서는 위키피디아에 존재하는 인포박스를 1)소스 언어 자원으로부터 획득하여 타겟 언어로 번역하고, 2)번역된 결과물과 웹그래프를 이용하여 타겟 언어 데이터에서 획득하는 정보와 결합하는 과정을 통해 자동으로 인포박스를 생성하는 기법에 대하여 설명한다. 웹그래프는 위키피디아에 존재하는 링크 구조를 통해 서로 다른 두 용어간의 관련도를 측정하여 인포박스에 추가될 내용을 파악하는데 사용한다. 본 논문의 기법은 언어 간 인포박스를 생성하는 측면에서, 영어 인포박스 데이터를 입력으로 하여 한국어 인포박스 데이터를 생성하는 방식으로 진행하였다. 평가를 위하여 기존 한국어에 실제 존재하는 인포박스 데이터와 비교 실험하는 방식을 사용하여 평균적으로 40%의 정확률과 83%의 재현율을 나타내었다. 하지만, 기존 한국어에 존재하는 인포박스 데이터의 내용이 인포박스에 포함될 완전한 데이터를 모두 포함했다고 볼 수 없으므로 본 논문에서 제안하는 수행한 실험의 정확률이 상대적으로 낮게 나온 것으로 분석되었다. 실제 사람이 수작업으로 새롭게 생성된 인포박스 데이터의 적합성을 판별한 경우 평균 76%의 정확률과 91%의 재현율을 나타내었다.

  • PDF

온톨로지를 활용한 자동화될 규칙 습득 방법론 및 효과 분석

  • Park, Sang-Eon;Lee, Jae-Gyu;Gang, Ju-Yeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-330
    • /
    • 2005
  • 시맨틱 웹 관련연구가 증가함에 따라 지능형 에이전트 혹은 규칙기반 시스템 등의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 그러나 규칙기반 시스템의 활용에는 아직도 규칙습득이 많은 제약이 되고 있다. 이와 같은 제약을 극복하기 위해 웹 페이지로부터 규칙을 습득하기 위한 XRML 방법론이 제안되었다. XRML 방법론은 웹 페이지로부터 규칙을 식별하고 식별된 결과로부터 자동으로 규칙을 생성하는 두 단계로 구성되어 있다. 여기서 규칙의 식별은 규칙생성의 자동화 정도에 매우 중요한 영향을 미친다. 그러나 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의존하고 있다. 이러한 지식관리자의 부담을 줄이기 위해 본 논문에서는 온톨로지 기반의 개선된 규칙식별 방법론을 제안하고자 한다. 이를 위해 먼저 OntoRule이라는 이름의 온톨로지를 설계하였다. OntoRule은 자동화된 규칙 식별을 지원하기 위해 사용되며, 규칙의 구성요소들과 구조에 대한 정보를 포함하고 있다. 그리고 OntoRule을 이용하여 규칙을 식별하는 절하를 제안하였다. OntoRule과 규칙식별 절차를 제안하는 과정에서 온톨로지 학습효과, 하향식 접근방식과 상향식 접근방식의 차이, 온톨로지 적용범위 관리, 규칙 구성요소의 식별순서, 생략된 별수의 식별과 같은 놈점들이 고려되었다. 마지막으로 실험을 통해 제안된 방법론의 효과를 보였다.

  • PDF

A Feature Extraction Method Based on Multi-Scale Image Analysis for Designing Convolutional Neural Network as to Polyp Detection (폴립 검출 컨볼루션 신경망 설계를 위한 캡슐내시경 영상의 멀티 스케일 분석 기반 특징 추출 기법)

  • Lim, Chang-Nam;Park, Ye-Seul;Lee, Jung-Won
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.669-672
    • /
    • 2018
  • 캡술내시경은 식도부터 항문까지 소화기관 전체를 한번에 촬영할 수 있는 의료기기로, 한번의 검사에 평균 8~12 시간 정도의 길이와 5만장 이상의 프레임으로 구성된 영상을 생성한다. 그러나 생성된 영상에 대한 분석은 수작업으로 진행되고 있어, 캡술내시경 영상 분석 자동화에 대한 기술적인 수요가 높아지고 있는 추세이다. 이를 위해, 캡슐내시경 영상 분석에 대한 많은 연구가 진행되고 있는데, 본 연구에서는 그 중에서도 폴립 영상에 대한 검출 자동화 연구에 주목하였다. 폴립이란 위장관 내에서 발견될 수 있는 융기성 병변으로, 많은 연구에서 기계학습 혹은 딥러닝 방식을 적용하여 이를 검출하기 위한 연구를 수행하였다. 그러나 캡슐내시경 영상의 특성상, 병번이 있는 영상이 굉장히 적기 때문에 일반적인 딥러닝 방식의 적용으로 좋은 성능을 내기 어렵다. 따라서 본 논문에서는 폴립 검출 컨볼루션 신경망 설계를 위한 멀티 스케일에 대한 원형 검출기법을 결합하여 폴립이 의심되는 영역을 추출해주는 특징 추출 기법으로, 수집한 데이터 150장에 대한 실험한 결과 약 82%의 성능을 보였다.

Design and Implementation of Invisible Depth Analysis (불가시심도분석의 설계 및 구현)

  • Lee, Sang-Bok;Lee, Seung-Yeob;Ha, Jae-Myung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.66-75
    • /
    • 2009
  • The purpose of this paper is design and implement the invisible depth analysis tools. The developed algorithm was basically used reference plan method and to remove first step errors we mix-used point-to-point method. and we consider error due to curvature and refraction for large scale analysis. The final algorithm was developed as ArcToolBox tools, which can be considered convenient and public use as well; as result it reduced experimental errors as compared with conventional method and makes possible high resolution analysis for large scale site.

  • PDF

Development of Power Performance Evaluation System using Modeling Technology (설비 모델링 기술을 이용한 발전성능평가 시스템 구성방안 연구)

  • Lee, Ji-Hoon;Lee, In-tae;Jung, Nam-Joon;Bae, Jung-Seok;An, Young-Mo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.81-88
    • /
    • 2018
  • Performance evaluation of a plant to efficiently manage and maintain the performance of the plant is a very important procedure. However, since the conventional performance evaluation method is an Excel-based manual method, the preparation procedure is complicated and the versatility is poor. In this paper, we analyze the problems of the existing performance evaluation system, effectively model the equipment, calculate the missing physical properties, and improve the versatility, efficiency and accuracy of the performance evaluation through the equipment modeler which performs automatic index calculation based on this.

Domain-robust End-to-end Task-oriented Dialogue Model based on Dialogue Data Augmentation (대화 데이터 증강에 기반한 도메인에 강건한 종단형 목적지향 대화모델)

  • Kiyoung Lee;Ohwoog Kwon;Younggil Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.531-534
    • /
    • 2022
  • 신경망 기반 심층학습 기술은 대화처리 분야에서 대폭적인 성능 개선을 가져왔다. 특히 GPT-2와 같은 대규모 사전학습 언어모델을 백본 네트워크로 하고 특정 도메인 타스크 대화 데이터에 대해서 미세조정 방식으로 생성되는 종단형 대화모델의 경우, 해당 도메인 타스크에 대해서 높은 성능을 내고 있다. 하지만 이런 연구들은 대부분 하나의 도메인에 대해서만 초점을 맞출 뿐 싱글 모델로 두 개 이상의 도메인을 고려하고 있지는 않다. 특히 순차적인 미세 조정은 이전에 학습된 도메인에 대해서는 catastrophic forgetting 문제를 발생시킴으로써 해당 도메인 타스크에 대한 성능 하락이 불가피하다. 본 논문에서는 이러한 문제를 해결하기 위하여 MultiWoz 목적지향 대화 데이터에 오픈 도메인 칫챗 대화턴을 유사도에 기반하여 추가하는 데이터 증강 방식을 통해 사용자 입력 및 문맥에 따라 MultiWoz 목적지향 대화와 오픈 도메인 칫챗 대화를 함께 생성할 수 있도록 하였다. 또한 목적지향 대화와 오픈 도메인 칫챗 대화가 혼합된 대화에서의 시스템 응답 생성 성능을 평가하기 위하여 오픈 도메인 칫챗 대화턴을 수작업으로 추가한 확장된 MultiWoz 평가셋을 구축하였다.

  • PDF

Method of PCB Short Circuit Detection using SURF (SURF를 이용한 PCB 쇼트-서킷 검출 방법)

  • Hwang, Dae-Dong;Shin, Si-Woo;Lee, Keun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5471-5478
    • /
    • 2012
  • In this paper, we propose a new short-circuit detecting method which can detect bad short-circuits, one of bad types occurring in PCB(Printed Circuit Board), by using SURF(Speeded-Up Robust Features) algorithm. The basic procedure in the proposed method sequentially consists of extracting features from both sample and inputted images by SURF, performing perspective transform by feature matching and matching results, extracting check areas of interest, binary coding and extracting short-circuits, and verifying results. The proposed method focuses on the robustness which can detect bad short-circuits even though the position and angle of PCB are not uniform and arbitrarily placed. Experimental results show that our method enables to detect bad short-circuits regardless of the location and angle of PCB placed variously and validate that the proposed method outperforms the conventional methods detecting bad short-circuits manually on the aspect of both the detection rate and time.

Maritime Transportation Planning of a Car Shipping Company using Genetic Algorithm (유전 알고리즘을 이용한 자동차 운반선사의 해상운송계획)

  • Park, Byung-Joo;Choi, Hyung-Rim;Kang, Moo-Hong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.649-657
    • /
    • 2010
  • In order to achieve a sustainable competitive advantage in the expanding maritime transportation market, most shipping companies are making every effort to reduce transportation costs. Likewise, the car shipping companies, which carry more than 80% of total car import and export logistics volume, also do their utmost for transportation cost saving. Until now many researches have been made for efficient maritime transportation, but studies for car shipping companies have rarely been made. For this reason, this study has tried to develop a maritime transportation planning support system which can help to save logistics costs and increase a competitive power of car shipping companies. To this end, instead of manual effort to solve the routing problem of car carrier vessels, this study has proposed a genetic algorithm. The performance of the genetic algorithm will be evaluated by comparing with the optimal solution of integer programming model.