Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.535-537
/
2003
본 논문에서는 필기 한자로 쓰여진 고문서를 보다 효율적으로 디지털 라이브러리화하기 위한 입력 방법을 제안한다. 제안한 입력 방법은, 문자 인식 방법과 수작업을 병행하는 방법으로서, 인식 및 기각 방법을 사용하여 유사한 글자들을 자동 군집화한 후, 수작업으로 교정 및 검증을 거쳐 최종 입력하는 방식이다. 한국학 고문서인 승정원일기를 대상으로 한 실험에서, 제안한 방법이 높은 정확률과 낮은 기각 비율을 보임으로써, 기존의 수작업 입력 방법을 대체할 경우 상당한 시간 및 노동력의 절감을 가져올 것으로 기대한다.
현재 초ㆍ중ㆍ고등학교(이하 ‘학교기관’ )에서 쓰이고 있는 기존의 수작업 방식의 회계관리와 DOS 방식의 행정전산관리 프로그램의 한계점을 벗어나 새로운 GUI 윈도우 체계의 프로그램의 개발 필요성이 대두되어 본 시스템을 개발하게 되었다. 또한 학교기관에 납입해야 할 모든 납부금, 급식비, 장부관리에서부터 수입, 지출 등 학교에서 쓰이는 회계부분의 수작업을 모듈화 및 집약화하고 누구나 쉽게 운영할 수 있는 행정관리 시스템, 일괄처리로 구성하도록 하였으며, DB를 이중모드(사용자 모드와 관리자모드)로 분리, 보안문제를 보충하고, 문서의 표준화로 정보교류의 용이하다. 전국 학교기관의 회계운영방식을 표준화하여 구축 설계하고, 초보자 입장을 지향한 순차적 처리방식과 회계관리의 중복처리를 집약화 하여 구축하였다.
편측무시는 뇌졸중 환자에게서 나타나는 지각 손상중의 하나로 말초 운동 및 감각 신경의 손상과 상관없이 손상된 대뇌반구의 반대편의 공간과 신체의 지각이 감소된 상태로 양방향에서 동시에 주어지는 자극에 대해서 한쪽 자극만을 지각하며 뇌손상 반대편의 신체 움직임의 인식 부족과, 무시된 공간쪽으로의 적은 눈 움직임을 보인다. 이와 같은 편측무시를 측정하는 기존 방법으로는 Albert Test, Line bisection Test, Star Cancellation Test 등이 있다. 하지만, 기존 편측무시 평가 방식에는 여러 가지 단점들이 발생한다. 항상 새로운 평가용지가 필요, 검사시간이 오래 소모되고, 모든 작업을 수작업으로 진행, 종이로 데이터를 관리, 수작업이므로 인력낭비 발생한다. 따라서 본 논문에서는 이러한 아날로그 방식에서 나오는 문제점들을 누구나 사용하고 있는 스마트 디바이스를 이용해 디지털방식으로 전환하여 기존의 비효율적이던 방식을 개선시키고자 평가시스템을 개발하고자 한다.
Journal of Korean Library and Information Science Society
/
v.38
no.4
/
pp.257-276
/
2007
Back-of-book-style indexes have a similar function as back-of-book indexes. The best advantage o4 back-of-book-style indexes for Information access on the web is to give direct access to specific subjects of interest. Though back-of-book-style indexes are alphabetically arranged as back-of-book indexes, they have linked index entries to contents on the site by using a anchor tag of HTML. In this research, I have created back-of-book-style indexes in two separated ways, by hand-crafted and semi-automatic Indexing. We have utilized back-of-book-style indexes, that is similar to back-of-book index of traditional information organization method of library and information science, in library circumstances.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.496-498
/
2001
GIS를 이용한 원격 탐사 방법으로, 기존의 항공촬영을 위한 전용 항공기와 전용 촬영 장비를 사용하는 대신 경비행기와 소형 video-camera를 이용하여 비교적 저렴한 비용으로 자료 획득이 가능하다. 그러나 기존의 황공촬영 방식과 달리, 이 Video-GIS 방식은 좁은 시야각과 촬영 자세가 쉽게 변하는 문제점을 가지고 있으며, 동영상에서 각 영상 frame을 일일이 추출하여 수작업으로 mosaic하여 하나의 큰 영상을 만들어야 하는 단점이 있었다. 본 논문에서는 이러만 수동작업 영상 mosaic를 자동화하는 새로운 방법을 제시 하고자 한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.5
/
pp.237-244
/
2018
The Smart Factory level of manufacturing factories of SMEs now lacks a system for grasping the accurate inventory amount associated with inventory movements in managing warehouses at the basic level. Also, it is difficult to manage accurate materials for loss of data due to worker manual work and production method due to experience. In order to solve this problem, in this paper, automatic acquisition of inventory to minimize manual work to grasp workers' Inventory and improve automation is done. In the smart warehouse management system using the IoT-based autonomous mobile module, the autonomous mobile module acquires the data of the inventory storage while moving through the line. In order to grasp the material of the Inventory storage, The Camera module recognizes the name of the inventory storage. And Then, If output matches, the data measured by the sensor is transferred to the server. This data can be processed, saved in a database, and real-time inventory quantity and location can be grasped in a web-based monitoring environment for administrators. The Real-time Automatic Inventory (RAIC) systems is reduce manual tasks and expect the effects of automated inventory management systems.
Journal of the Korean Society for information Management
/
v.24
no.1
s.63
/
pp.251-271
/
2007
This paper studies the problem of classifying documents with labeled and unlabeled learning data, especially with regards to using document similarity features. The problem of using unlabeled data is practically important because in many information systems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. There are two steps In general semi-supervised learning algorithm. First, it trains a classifier using the available labeled documents, and classifies the unlabeled documents. Then, it trains a new classifier using all the training documents which were labeled either manually or automatically. We suggested two types of semi-supervised learning algorithm with regards to using document similarity features. The one is one step semi-supervised learning which is using unlabeled documents only to generate document similarity features. And the other is two step semi-supervised learning which is using unlabeled documents as learning examples as well as similarity features. Experimental results, obtained using support vector machines and naive Bayes classifier, show that we can get improved performance with small labeled and large unlabeled documents then the performance of supervised learning which uses labeled-only data. When considering the efficiency of a classifier system, the one step semi-supervised learning algorithm which is suggested in this study could be a good solution for improving classification performance with unlabeled documents.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.33-40
/
2001
본 논문은 1999년도에 구축된 '150만 세종 형태소 분석 말뭉치'를 바탕으로 형태소 기분석 사전을 구축하고, 이를 토대로 후처리의 수작업을 고려한 반자동 태거를 구축하는 방법론에 대해 연구한 것이다. 분석말뭉치 구축에 있어 기존 자동 태거에 의한 자동 태깅의 문제점을 분석하고, 이미 구축된 형태분석 말뭉치를 이용해 후처리 작업이 보다 용이한 1차 가공말뭉치를 구축하는 반자동 태거의 개발과 그 방법론을 제시하는데 목적을 두고 있다. 이와 같은 논의에 따라 분석 말뭉치의 구축을 위한 태거는 일반적인 언어 처리를 위한 태거와는 다르다는 점을 주장하였고, 태거에 전적으로 의존하는 태깅 방식보다는 수작업의 편의를 제공할 수 있는 태깅 방식이 필요함을 강조하였다. 본 연구에서 제안된 반자동 태거는 전체적인 태깅 성공률과 정확도가 기존의 태거에 비해 떨어지지만 정확한 단일 분석 결과를 텍스트의 장르에 따른 편차 없이 50% 이상으로 산출하고, 해결이 어려운 어절 유형에 대해서 완전히 작업자의 판단에 맡김으로써 오류의 가능성을 줄인다. 또한 분석 어절에 대해 여러 표지를 부착함으로써 체계적이고 단계적인 후처리 작업이 가능하도록 하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.814-816
/
2003
오늘날 핵산과 단백질의 결합체에 관한 자료가 PDB(Protein Data Bank)와 같은 공공 데이터베이스에 급속도로 증가되고 있고 하나하나의 자료 자체도 많은 양의 데이터를 가지고 있기 때문에 더 이상 수작업으로 이를 분석하기란 거의 불가능할 뿐 아니라 정확도에 많은 문제가 있다. 그래서 본 연구에서는 방대한 생물학 자료를 효율적으로 분석하기 위해 자동화된 알고리즘을 개발하여 수작업에 의존하던 기존방식을 개선하였다. 이 알고리즘으로 51개의 RNA와 단백질간의 결합구조로 구성된 Dataset과 129개의 DNA와 단백질 간의 결합구조로 구성된 Dataset 분석하여 각각의 경우에 있어서의 결합성향과 결합유형을 찾아내었다. 이러한 본 연구의 결과가 아직 구조가 밝혀지지 않은 단백질-핵산간의 결합부위를 예측하는 알고리즘 개발에 기초 자료로 이용될 수 있다. 신약을 개발하는 과정에서 표적단백질의 결합부위를 예측하는데 활용될 수 있을 것이다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.105-111
/
2021
한국어 사실 확인 과제는 학습 자료의 부재로 인해 연구에 어려움을 겪고 있다. 본 논문은 수작업으로 구성된 학습 자료를 토대로 자연어 생성 모델을 이용하여 한국어 사실 확인 자료를 구축하는 방법을 제안한다. 본 연구는 임의의 근거를 기반으로 하는 주장을 생성하는 방법 (E2C)과 임의의 주장을 기반으로 근거를 생성하는 방법 (C2E)을 모두 실험해보았다. 이때 기존 학습 자료에 위 두 학습 자료를 각각 추가하여 학습한 사실 확인 분류기가 기존의 학습 자료나 영문 사실 확인 자료 FEVER를 국문으로 기계 번역한 학습 자료를 토대로 구성된 분류기보다 평가 자료에 대해 높은 성능을 기록하였다. 또한, C2E 방법의 경우 수작업으로 구성된 자료 없이 기존의 자연어 추론 과제 자료와 HyperCLOVA Few Shot 예제만으로도 높은 성능을 기록하여, 비지도 학습 방식으로 사실 확인 자료를 구축할 수 있는 가능성 역시 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.