• Title/Summary/Keyword: 수위

Search Result 3,996, Processing Time 0.031 seconds

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Evaluation of water drainage according to hydraulic properties of filling material of sand dam in Mullori, Chuncheon (춘천 물로리 지역 샌드댐 채움재 수리특성에 따른 배수량 평가)

  • Chung, Il-Moon;Lee, Jeongwoo;Kim, Min-Gyu;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.923-929
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area of water welfare where local water supply is not supplied, and it is supplying water to the villages with small water supply facilities using lateral flow and groundwater as water sources. This is an area with poor water supply conditions, such as relying on water trucks due to water shortages during the recent severe drought. Therefore, in order to solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed along the valley, and this facility has been operating since May 2022. In this study, repeated simulations were performed according to the hydraulic conductivity of the filler material and the storage coefficient value for the inflow condition for about two years from mid-March 2020 to mid-March 2022. For each case, the amount of discharge through the perforated drain pipe was calculated. Overall, as the hydraulic conductivity increased, the amount of discharge and its ratio increased. However, when the hydraulic conductivity of the second floor was relatively low, the amount of discharge increased and then decreased as the hydraulic conductivity of the third floor increased. This is considered to be due to the fact that the water level was kept low due to the rapid drainage compared to the net inflow into the third floor because the water permeability of the third floor and the drainage coefficient of the drain pipe were large. As a result of simulating the flow of the open channel in the upper part of the sand dam as a hypothetical groundwater layer with very high hydraulic conductivity, the decrease in discharge rate was slower than the increase in the hydraulic conductivity of the hypothetical layer, but it was clearly shown that the discharge volume decreased relatively as the hydraulic conductivity of the virtual layer increased.

Spatial Distribution and Successional Changes of Riparian Vegetation on Sandbars Exposed after Watergate-Opening of Weirs in the Geumgang River, South Korea (보 개방 후 노출된 금강 모래톱에서 하천 식생의 공간 분포와 천이)

  • Lee, Cheolho;Kim, Hwirae;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.194-205
    • /
    • 2022
  • Sandbars formed by sediment transportation and sedimentation are some of the most important habitats for specific wildlife and they provide an aesthetic landscape in streams. The purpose of this study was to understand the successional process of the colonization and development of early vegetation over time on sandbars exposed by the opening of a gate at a downstream weir. We selected the following four study sites in the Geumgang River, South Korea: three weir-upstream sites with different gate-opening times and a control site that was not affected by weir operation. Changes in the structural characteristics and spatial distribution of the riparian vegetation on the sandbars exposed after opening the gate at the weir were surveyed according to the different exposure periods of the sandbars at the study sites. The newly formed sandbars accounted for more than 33% of the area of the existing floodplain in the three weir-upstream sites of the Geumgang River after opening the gate at the weir. Nine main plant communities were distributed on the exposed sandbars. These communities were classified as annual mesophytic, perennial hydrophytic, perennial hygrophytic, subtree, and tree vegetation based on their species traits. As the duration of exposure of the sandbar increased, the area of the bare sandbar and the annual herbaceous and perennial hydrophytic communities decreased, and the areas occupied by perennial hygrophytic, subtree, and tree communities increased. Changes in vegetation on the sandbar were classified into three types of succession according to the condition of the aquatic habitat before the gate-opening and the degree of physical disturbance caused by the water flow after the gate-opening. The types of succession were: 1) succession starting from hydrophytes in the lentic aquatic zone, 2) succession starting from annual herbaceous hygrophytes in the lotic aquatic zone, and 3) willow-dominated succession in the disturbed channel side. Our results suggested that the dynamics of successional changes in vegetation should be considered during weir operation to ecologically manage the habitats and landscape of the fluvial landforms, including sandbars in streams.

A Study on the Variation of River Vegetation by Seasonal Precipitation Patterns (계절별 강수 패턴에 따른 하천 식생 변화 양상 연구)

  • Hee-Jeong JEONG;Seung-Yeon YU;Eun-Ji CHO;Yong-Joo JI;Yong-Suk KIM;Hyun-Kyung OH;Jong-Sung LEE;Hyun-Do JANG;Dong-Gil CHO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.1-19
    • /
    • 2023
  • In Korea, excessive vegetation in rivers made up of sand and gravel is emerging as a nationwide problem, which is attributed to increased spring precipitation and decreased annual precipitation. Therefore, this study was conducted for the purpose of identifying the effect of changes in precipitation patterns on river vegetation in Namcheon, Gyeongju, and analyzing the area of vegetation and ecological characteristics. As a result of the study, the amount of monthly precipitation in the summer of Namcheon decreased after 2007, and the area of vegetation increased continuously compared to the area of the sandbank. The proportion of naturalized plants increased steadily when precipitation continued to a level that did not cause flooding, but the area occupied by naturalized plants was small. Also, when the water level is maintained, the species diversity is low due to the dominance of a single species, and the dominant species was mainly native plants. Dominance of native plants inhibited the growth of naturalized plants, but the vegetation area increased even more. Therefore, it is necessary to manage the spread of vegetation itself rather than the division of native plants and naturalized plants in order to eliminate the active growth and prosperity of river vegetation. High water levels and continuous flooding caused by torrential rains in summer disturbed the plant communities, and vegetation formed afterwards was mainly native plants. Such flooding in river ecosystems is a positive factor for the emergence of native plants and over-formed vegetation communities, so it should be considered when establishing a vegetation management plan.

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.

Keeping Distance from Pathos and Turning Rational Trade into Emotions -The Change of Genres and the Reorganization of Emotions in the South Korean Films in the 1990s (파토스에의 거리와 합리적 거래의 감성화 -1990년대 한국영화 장르의 변전(變轉)과 감성의 재편)

  • Park, Yu-Hee
    • Journal of Popular Narrative
    • /
    • v.25 no.3
    • /
    • pp.9-40
    • /
    • 2019
  • This study presents an investigation into South Korean films in the 1990s in the aspects of genre change and emotional reorganization. The 1990s witnessed a change of genres and a paradigm shift in the history of Korean films according to the revolutionary changes of the film industry structure and media environment. Believing that these changes had something to do with emotional changes driven by global capitalization symbolized by democratization in 1987 and the foreign currency crisis in 1998, the investigator analyzed the phenomena in film texts and examined the opportunities and context behind them. Unlike previous researches, this study made an approach to the history of Korean films in the 1990s with three points: first, this study focused on why the romantic comedy genre emerged in the 1990s and what stages its formation underwent since there had been no profound discussions about them; secondly, this study analyzed the biggest hits during the transitional period from 1987~1999 to figure out the mainstream genres and emotions during that period since these hits would provide texts to show the genre domain and public taste in a symbolic way; and finally, this study grew out of the separate investigation approach between melodramas and romantic comedies and looked into an emotional structure to encompass both genres to make a more broad and dynamic approach to South Korean films in the 1990s. History flows continuously without severance from previous times. When there is attention paid to inflection points and opportunities in the continuum, it can show the dynamics and structures of changes. This research led to the following conclusions: the mainstream genre of South Korean films had been melodramas until the 1980s. The old convention had been kept to offset or suture contradictions and excessive elements deviant from the structural consistency. Here, the structural consistency refers to no compliance to rational regulations or trade. The process of genre reorganization in the 1990s happened while securing some distance from the convention of making the structural consistency a sacrifice. The direction was to reinforce control through reasonable rationalism and logic of capital. It developed into romance, which would start with comedy to keep distance from the objects through laughter, heighten the level of remarks, and expand criticality, symbolize emotions with taste items, and build through the logic of mutual consensus and practical trade. In the 1990s, the South Korean films thus developed in a direction of moving away from the narrative of urgent pathos based on unconditional familism. It was on the same track as the entry of the South Korean society into the upgraded orbits of democracy and capitalism as the twins of modern rationalism since the latter part of the 1980s.

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

Pansori Patronage of Daewongun and His Influences on Park Yujeon's Jeokbyeokga (판소리 패트론으로서의 대원군과 박유전 <적벽가>의 변모)

  • Yoo, Min-Hyung
    • (The) Research of the performance art and culture
    • /
    • no.38
    • /
    • pp.143-191
    • /
    • 2019
  • This research argues that Pansori had patrons in its development. Patrons are commonly discussed aspect of history of any art form. Pansori is no exception. While Pansori originally began as the art of the common people, Yangban class became the primary audience. This paper examines the role of royal family of Choson dynasty in development of Pansori. Heungseon Daewongun (흥선대원군) in particular was a Pansori aficionado. The record around Daewongun's involvement to Pansori proves that heavy monetary investment was made. He hosted Pansori competitions and sponsored creation of Pansori tradition, Boseong Sori (보성소리) and Gangsanje (강산제). Also the aspect of Pansori patronage lies not just in Yangban class, but also in Jung'in class, which is roughly analoguous to European bourgeois in that they were not of Yangban class, but had gained monetary status, and had aesthetics of both Yangban and commoner class. I argue that Heungseon Daewongun's ties to the Jung'in class is reflected in his actions towards Pansori artists. The traditions he had sponsored have important characteristics, including sophisticated lyrics heavily utilizing Classical Chinese poetry, highly artistic musical composition, and conservative Confucian ethics. Those characteristics indicate that the Pansori traditions sponsored by the royal patrons have changed to cater to their artistic taste and philosophy. This paper conducts a textual comparative analysis between Gangsanje Pansori Jeokbyeokga (강산제 판소리 적벽가), Dongpyeonje's Pansori Jeokbyeokga (동편제 판소리 적벽가), and Seopyeonje Pansori Jeokbyeokga, who share the same plot yet offers a stark differences in tone, philosophy, and sense of humor. Daewongun was a primary sponsor of Pansori, which proves that Yangban class and the royal family have played important role as patrons of Pansori.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.