• Title/Summary/Keyword: 수요예측기법

Search Result 273, Processing Time 0.031 seconds

Forecasting Electric Power Demand Using Census Information and Electric Power Load (센서스 정보 및 전력 부하를 활용한 전력 수요 예측)

  • Lee, Heon Gyu;Shin, Yong Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.3
    • /
    • pp.35-46
    • /
    • 2013
  • In order to develop an accurate analytical model for domestic electricity demand forecasting, we propose a prediction method of the electric power demand pattern by combining SMO classification techniques and a dimension reduction conceptualized subspace clustering techniques suitable for high-dimensional data cluster analysis. In terms of electricity demand pattern prediction, hourly electricity load patterns and the demographic and geographic characteristics can be analyzed by integrating the wireless load monitoring data as well as sub-regional unit of census information. There are composed of a total of 18 characteristics clusters in the prediction result for the sub-regional demand pattern by using census information and power load of Seoul metropolitan area. The power demand pattern prediction accuracy was approximately 85%.

Load Forecasting for the Holidays using a Polynomial Regression Incorporating Temperature Effect (온도 효과를 고려한 다항 회귀분석법을 이용한 특수일 최대 전력 수요 예측 알고리즘)

  • Wi, Young-Min;Moon, Guk-Hyun;Lee, Jae-Hee;Joo, Sung-Kwan;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.29-30
    • /
    • 2007
  • 본 논문은 특수일 전력 수요 예측을 위해 온도 효과를 고려한 데이터 추출법을 이용하여 특수일 전력 수용 예측 오차율을 감소시키는 방법을 제시한다. 제안된 기법의 타당성을 확인하기 위해 논문에서는 통계학에서 사용되는 결정계수를 이용한다. 결정계수를 이용하여 온도효과의 고려 여부가 오차율에 미치는 영향을 분석하였다. 또한 제안된 기법은 1996년 특수일 오차율을 기존 논문의 결과와 비교 분석하여 기존 방식 대비 특수일 전력 수요예측 관련 우수성을 보였으며, 최근 데이터인 2006년 특수일 전력 수요 예측을 통하여 검증하였다.

  • PDF

Explainable Solar Irradiation Forecasting Based on Conditional Random Forests (조건부 랜덤 포레스트 기반의 설명 가능한 일사량 예측)

  • Moon, Jihoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.323-326
    • /
    • 2020
  • 태양광 발전은 이산화탄소 배출로 인한 기후 변화에 대응하는 주요 수단으로 인식되어 수요와 필요성이 급격하게 증가하고 있다. 최적의 태양광 발전 시스템의 운영을 위해서는 정교한 전력수요 및 태양광 발전량 예측 모델이 요구되며, 온도 및 일사량은 태양광 발전량 예측 모델의 필수적인 입력 변수이다. 하지만, 한국 기상청의 동네예보는 일사량에 관한 예측값을 제공하지 않아 정교한 태양광 발전량 예측 모델을 구축하는 것은 어렵다. 이를 위해 일사량 예측 기법에 관한 많은 연구사례가 보고되고 있지만, 다수의 연구들은 충분한 데이터 셋을 이용하여 일사량 예측 모델을 개발하였다. 초기 태양광 발전 시스템 운영을 위해서는 불충분한 데이터 셋을 이용한 예측 모델 개발이 필요하나 이에 대한 사례는 불충분하다. 본 논문은 실제 태양광 발전 시스템에서 수집된 불충분한 데이터 셋을 이용한 단기 일사량 예측 기법을 제안한다. 먼저, 기상청 동네예보의 다양한 기상 요인들을 이용하여 일사량 예측 모델을 위한 입력 변수를 구성한다. 다음으로, 조건부 랜덤 포레스트를 이용하여 일사량 예측 모델을 구성하며, 설명 가능한 일사량 예측뿐만 아니라 더욱더 많은 데이터 셋을 학습하기 위해 시계열 교차검증을 수행한다. 실험 결과, 제안한 기법은 다른 예측 기법들보다 높은 예측 정확도를 보일 뿐만 아니라 설명 가능한 예측 결과를 제시할 수 있음을 보여준다.

A scheme for short-term load forecast applying the trend of load variation rate (부하 변동비의 추세를 반영한 단기 전력수요예측 기법)

  • Lim, Hyeong-Woo;Moon, Si-Woong;Park, Jeong-Do;Song, Kyung-Bin;Joo, Sung-Kwan;Shin, Ki-Jun;Cho, Bum-Seob;Jung, Chang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.69-70
    • /
    • 2011
  • 평일의 전력수요는 연속적인 시계열 특성이 뚜렷하여 전력수요예측 오차가 크지 않으나 특수일의 경우는 불연속적인 시계열특성을 가지게 되어 전력수요예측 오차율이 크다. 특히, 연휴의 직전 평일은 평일의 특성과 특수일의 특성이 혼재하고 있어 오차율이 가장 큰 일자 중 하나이다. 따라서 본 논문에서는 연휴 직전 평일과 직전 일요일과의 부하 변동비를 계산하여 전력수요를 예측하는 방법을 제안하고, 추석연휴 직전 평일에 제안한 방법을 적용하여 최대수요예측 오차가 개선됨을 확인하였다.

  • PDF

Demand Forecast For Empty Containers Using MLP (MLP를 이용한 공컨테이너 수요예측)

  • DongYun Kim;SunHo Bang;Jiyoung Jang;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.85-98
    • /
    • 2021
  • The pandemic of COVID-19 further promoted the imbalance in the volume of imports and exports among countries using containers, which worsened the shortage of empty containers. Since it is important to secure as many empty containers as the appropriate demand for stable and efficient port operation, measures to predict demand for empty containers using various techniques have been studied so far. However, it was based on long-term forecasts on a monthly or annual basis rather than demand forecasts that could be used directly by ports and shipping companies. In this study, a daily and weekly prediction method using an actual artificial neural network is presented. In details, the demand forecasting model has been developed using multi-layer perceptron and multiple linear regression model. In order to overcome the limitation from the lack of data, it was manipulated considering the business process between the loaded container and empty container, which the fully-loaded container is converted to the empty container. From the result of numerical experiment, it has been developed the practically applicable forecasting model, even though it could not show the perfect accuracy.

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting: Reliability Computation (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 신뢰도 계산)

  • Shim, Hyun-Jeong;Park, Lae-Jeong;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.318-322
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측시스템에서 예측치별로 신뢰도를 계산하는 체계적인 방법을 제안한다. 예측시스템의 신뢰도를 추정하는 작업은 특히 신경회로망과 같은 경험적 모델을 실제 활용하기 위해서 필수적인 연구로 인식되고 있다. 본 논문에서 제안하는 출력별 신뢰 구간 계산 방법은 지역 표현하는 뉴로-퍼지 모델의 특성을 활용하여 학습된 퍼지 규칙 각각에 대해 신뢰도를 추정하는 Local reliability measure 기법을 사용한다. 제안된 신뢰도 계산이 가능한 단기 전력 수요 예측시스템은 먼저 결정 트리를 이용하여 초기 구조를 생성하고, 이를 초기 구조 뱅크에 저장한다. 저장된 초기 구조 뱅크를 이용하여 뉴로-퍼지 모델을 학습하고, 학습된 퍼지 규칙의 신뢰도를 추정한다. 제안된 시스템의 실효성을 검증하기 위해서 한국 전력에서 수집한 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 한 시간 앞의 수요를 예측하는 모의 실험을 수행하고 실험 결과를 비교 분석한다.

  • PDF

Monthly Electric Load Forecasting Method Using Multiple Regression Model (다중회귀모형을 이용한 월간 전력수요 예측기법)

  • Moon, Jihoon;Kim, Yongsung;Park, Jinwoong;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.567-570
    • /
    • 2016
  • 전력수요 예측은 설비투자, 수급 안정, 구매전력비 등에 직결되는 중요한 요소이며 국가 경제에 미치는 영향이 크다. 특히 인구가 밀집한 대도시의 경우 정치, 교육, 문화, 경제적 활동들이 전력사용과 밀접한 연관이 있어 안정적인 전력공급을 위한 정확한 전력수요 예측이 필요하다. 최근 평균기온 및 국내총생산을 독립변수로 활용하여 다중회귀모형을 구성한 연구가 전국 단위 전력수요 예측에 유용한 결과를 보여주었다. 하지만 좀 더 작은 단위 지역의 전력수요를 예측할 때에는 지역마다 제반 여건에 따른 전력사용 용도가 다르므로, 그 지역의 전력수요와 상관관계가 높은 다른 변수들을 함께 고려해야 할 필요가 있다. 본 논문은 서울시 자치구별 월 단위 전력수요 예측을 위하여 과거 전력수요량을 독립변수, 평균기온, 지역내총생산, 자치구별 인구, 세대수, 지하철 승 하차 인원을 종속변수로 설정한 다중회귀모형을 구성하였다. 이를 기반으로 다양한 실험을 통해 자치구별 월간 전력수요 예측을 진행하였으며, 그 결과 이전보다 향상된 정확도를 얻을 수 있었다.

Development of Heat Demand Forecasting Model using Deep Learning (딥러닝을 이용한 열 수요예측 모델 개발)

  • Seo, Han-Seok;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 2018
  • In order to provide stable district heat supplying service to the certain limited residential area, it is the most important to forecast the short-term future demand more accurately and produce and supply heat in efficient way. However, it is very difficult to develop a universal heat demand forecasting model that can be applied to general situations because the factors affecting the heat consumption are very diverse and the consumption patterns are changed according to individual consumers and regional characteristics. In particular, considering all of the various variables that can affect heat demand does not help improve performance in terms of accuracy and versatility. Therefore, this study aims to develop a demand forecasting model using deep learning based on only limited information that can be acquired in real time. A demand forecasting model was developed by learning the artificial neural network of the Tensorflow using past data consisting only of the outdoor temperature of the area and date as input variables. The performance of the proposed model was evaluated by comparing the accuracy of demand predicted with the previous regression model. The proposed heat demand forecasting model in this research showed that it is possible to enhance the accuracy using only limited variables which can be secured in real time. For the demand forecasting in a certain region, the proposed model can be customized by adding some features which can reflect the regional characteristics.

Forecasting Modeling of Heavy Tail Typed Demand using Student's t-Copula Fitting in Supply Chain Management (Student's t-Copula 적합을 통한 Heavy Tail형 SCM 수요 데이터의 모델링 및 분석)

  • Kim, Taesung;Lee, Hyunsoo
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.103-111
    • /
    • 2013
  • As the demand-oriented management has been getting important in Supply Chain Management (SCM), various forecasting methods have been suggested including regression analyses. However, dependency structures among variables have been captured by a correlation coefficient, only. It results in inaccurate demand predictions. This paper suggests a new and effective forecasting modeling framework using student's t-copula function. In order to show overall modeling procedures framework, heavy tail typed numerical data and its copula estimations are provided. The suggested methodology can contribute to decrease the bullwhip effect and to stabilize volatile environment in a supply chain network.

A review of artificial intelligence based demand forecasting techniques (인공지능 기반 수요예측 기법의 리뷰)

  • Jeong, Hyerin;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.795-835
    • /
    • 2019
  • Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.