• 제목/요약/키워드: 수소 환원

검색결과 605건 처리시간 0.026초

Ar+H2 혼합(混合)가스에 의한 MoO3의 MoO2로의 환원거동(還元擧動) (Reduction Behavior of MoO3 to MoO2 by Ar+H2 Gas Mixture)

  • 손호상;이향준;박종일
    • 자원리싸이클링
    • /
    • 제20권4호
    • /
    • pp.71-77
    • /
    • 2011
  • $MoO_3$ 분말을 723 K ~ 873 K에서 Ar+$H_2$ 혼합기체를 이용히여 수평관상로에서 $MoO_2$로 훤원하였으며, 반용속도를 배가스 중의 상대습도를 측정하여 계산하였다. 반응속도는 수소가스 분압과 반응속도에 따라 현저하게 증가하였다. 환원 반응초기에 $H_2O$의 발생속도가 급격하게 증가하였으며, 시간의 경과에 따라 배가스 중의 $H_2O$ 분압은 급격하게 감소하였다. 이 시기에 환원 반응율은 직선적으로 증가하였다. 환원반응 초기의 $MoO_3$에서 $MoO_2$로의 환원반응의 활성화 에너지는 73.56 kJ/mol로 계산되었다.

혐기 혼합균주에서 황산염 농도변화에 따른 수소 발효 특성 (Fermentative Hydrogen Production under Various $SO_4^{2-}$ Concentration using Anaerobic Mixed Microflora)

  • 황재훈;최정아;이종학;정태영;차기철;송호철;용보영;김동진;전병훈
    • 대한환경공학회지
    • /
    • 제31권6호
    • /
    • pp.434-441
    • /
    • 2009
  • 황산염의 농도변화에 따른 연속 혐기성 수소 발효에 미치는 영향을 고찰하기 위해서 혼합균주를 사용한 완전 혼합형 반응조를 운전하였다. 기질은 글루코오스를 사용하였고, 수리학적 체류시간은 1, 0.5, 0.25 일로 각각 고정하였다. 황산염 농도는 0${\sim}$20,000 mg/L로 단계별 증가시켰고 pH 5.5로 운전하였다. 실험 결과 높은 황산염 농도에 관계없이 수소가 발생하였고, HRT 0.25일로 짧아짐에 따라 수소 발생이 높게 나타났다. HRT 1, 0.5, 0.25일 각 조건별 수소 생성량과 수소 수율은 2.9, 4.6, 9.4 L/day, 2.0, 1.8, 1.6 mol $H_2$/mol glucose로 나타났으며, 잔존 황산염 96${\sim}$98, 95${\sim}$97 94${\sim}$97%로 나타나 황산염 환원이 발생하지 않았다. FISH 결과 모든 조건에서 수소생성균의 분포는 나타났지만 황산염환원균의 분포는 나타나지 않았다.

입도분포가 넓은 분철광석의 탄화특성 (Characteristics of Carbidization for Iron Ore Fines with a Wide Size Range)

  • 황호순;정우창;정원섭;정원배
    • 자원리싸이클링
    • /
    • 제12권5호
    • /
    • pp.42-49
    • /
    • 2003
  • 넓은 입도분포를 가지는 헤마타이트 철광석을 사용하여 $H_2$$H_2$-CO 혼합가스 분위기에서 환원 및 탄회특성에 대하여 고찰하였다. 환원에 의한 활성화에너지 값은 약 20kJ/mol 였다. 환원 및 탄화단계에서 무게변화는 환원단계에서는 약 28% 감소하였고, 탄화단계에서는 약 5%증가하였다. 이는 이론 계산식에 의한 값과 거의 일치하였다. 온도, 입도 및 가스비($_H2$/CO=1~5 범위)에 따른 탄화속도는 온도가 낮을수록 입자가 작을수록 그리고 가스비가 작을수록 탄화속도가 증가하였다. 또한 $H_2$의 가스비($H_2$/CO=1)가 낮을 때는 유리카본(C, free carbon)이 발생하였다. 수소가스를 혼합하였을 경우가 탄화속도는 증가하였으나, 수소분율에 비례하여 증가하지는 않았다. 혼합가스 중 수소분율($X_{H2}$ )이 0.5일 때 ($H_2$/CO=1) 탄화속도가 최대였다. 이때 수소가 탄화철 생성과정에 있어서 촉매역할을 한 것으로 추정된다.

소화슬러지를 이용한 토양 내 석유계 탄화수소의 혐기성 분해 (Anaerobic Degradation of Petroleum Hydrocarbons in Soil by Application of a Digestion Sludge)

  • 이태호;변임규;박정진;박현철;박태주
    • 대한환경공학회지
    • /
    • 제29권8호
    • /
    • pp.938-943
    • /
    • 2007
  • 혐기성 소화조 슬러지 주입에 의한 디젤오염(10,000 mg/kg soil) 토양 내 석유계 탄화수소의 혐기성 분해에 관하여 조사하였다. 오염된 토양 50 g에 총휘발성 고형물 농도 2,000 mg/L인 소화조 슬러지를 15 mL/kg soil와 30 mL/kg soil 농도로 주입하고 90일간 배양한 결과, 각각 37.2%와 58.0%의 총석유계 탄화수소(TPH)의 분해율을 나타내었다. 슬러지를 주입하지 않은 오염토양 대조군과 멸균된 토양에 멸균된 슬러지를 주입한 대조군에서는 120일간의 배양에서 초기 첨가한 디젤의 17%와 4%가 각각 제거된 것에 비하여, 전자수용체의 종류를 달리한 여러 혐기성 조건, 즉, 질산염 환원 조건, 황산염 환원 조건, 메탄생성 조건, 혼합 전자수용체 조건 모두에서 소화조 슬러지 주입에 의해 토양 내 디젤의 40% 이상이 분해됨을 확인할 수 있었다. 배양 120일 동안의 오염토양 내 TPH의 분해율은 혼합 전자수용체 조건에서 75%로 가장 높았으며, 황산염 환원 조건(67%), 질산염 환원 조건(13%), 메탄생성 조건(43%) 순으로 나타났다. 그러나 난분해성 물질로 알려진 isoprenoid의 분해율은 황산염 환원 조건이 다른 전자수용체 조건에 비해 가장 높은 분해율을 나타내었다. 본 연구 결과를 통하여, 소화조 슬러지를 이용하여 혐기성 상태에서 오염토양 내 디젤을 분해하는 기술은 석유계 탄화수소로 오염된 토양의 실질적인 복원에 유용한 것으로 판단되었다.

간헐적 플라즈마 방전이 질소산화물의 탄화수소 선택적 촉매환원에 미치는 영향 (Effect of Intermittent Plasma Discharge on the Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides)

  • 윤경환;목영선
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.507-514
    • /
    • 2023
  • 촉매(Ag/γ-Al2O3) 충진형 유전체 장벽 방전 플라즈마 반응기를 이용한 질소산화물(NOx)의 선택적 촉매 환원을 조사하였다. 촉매 상에서 간헐적으로 플라즈마를 발생시킬 때 NOx의 환원제인 탄화수소가 부분 산화되어 알데하이드류를 생성하였으며, 알데하이드류의 높은 환원력으로 인해 촉매를 단독으로 사용한 경우에 비해 높은 NOx 전환율을 보여주었다. 동일한 운전 조건(온도: 250 ℃; C/N: 8)에서 비교한 NOx 저감 효율은 탄화수소(n-헵테인), 프로피온알데하이드, 뷰티르알데하이드에 대해 각각 47.5%, 92%, 96%로 나타났으며, 알데하이드류의 높은 질소산화물 환원 성능이 확인되었다. 간헐적 플라즈마 발생시 적정 조건을 파악하기 위하여, 고전압 on/off 주기를 0.5~3 min으로 조절하였고, 연속적인 플라즈마 발생의 경우와 동일한 에너지밀도에서 NOx 저감 성능을 비교하였다. 고전압을 2 min 간격으로 on/off 하여 간헐적으로 플라즈마를 생성시켰을 때 연속적인 플라즈마 발생 대비 가장 높은 질소산화물 저감 효율이 얻어졌다. 동일한 에너지밀도에서도 간헐적 플라즈마 방전의 경우가 연속 플라즈마에 비해 높은 NOx 저감 효율을 보이는 것은, 탄화수소가 분해되어 생성되는 알데하이드류 등의 중간생성물들이 NOx 저감 반응에 보다 효율적으로 이용되었기 때문이다.

열.기계적 처리가 Simulate $UO_2$분말의 성질에 미치는 영향에 대한 연구

  • 송근우;김봉구;이정원;배기광;양명승;박현수
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 춘계학술발표회논문집(2)
    • /
    • pp.739-744
    • /
    • 1995
  • 연소도 33 MWD/kgU에 해당하는 simulate $UO_2$ 소결체를 제조하여, 산화 (대기중 40$0^{\circ}C$), 고온산화 (대기중 110$0^{\circ}C$), 환원 (수소분위기 $600^{\circ}C$)을 차례로 실시하였다. 이 분말을 다시 산화/환원 처리를 반복하면서 분말의 크기, 비표면적, morphology를 조사하였다. 분말의 비표면적은 고온산화에 의해서 크게 감소했다가 산화/환원 cycle이 반복될수록 증가하는 경향을 보인다. attrition 분쇄에 의해서 분말의 비표면적은 매우 커지며, 그 증가폭은 산화/환원 cycle이 많아질수록 커진다. 고온산화 후 산화/환원 cycle을 2회 반복했을 때 소결밀도가 가장 높았다.

  • PDF

독립영양형 메탄생산세균의 농화 및 메탄생산 반응기의 개발 (Development of Bioreactors for Enrichment of Chemolithotrophic Methanogen and Methane Production)

  • 나병관;황태식;이성훈;주동훈;상병인;박두현
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.52-57
    • /
    • 2007
  • 수소-이산화탄소(5:1) 혼합가스 순환장치를 장착한 반응기를 이용하여 독립영양형 메탄생산세균을 농화하였으며, 생산된 메탄의 농도는 10%미만이었다. 30일 이상 농화배양한 후 16S-rDNA 동질성을 이용하여 반응기에서 생장하고 있는 세균을 분석한 결과 수소를 단일 에너지 원으로 이용하는 Methanobacterium curvum와 Methanobacterium oryzae로 확인되었다. 농화된 세균을 hollow-fiber수소 공급장치를 장착한 반응기에 배양하여 메탄의 농도를 30%까지 향상하였다. 그러나 농화된 세균을 hollow-fiber 수소 공급장치와 미량의 수소를 생산하고 전기화학적 환원성 환경을 유도할 수 있는 장치를 장착한 복합형 반응기에 적용한 결과 메탄의 생산성은 50%가지 향상하였다. 이러한 결과는 독립영양형 메탄생산세균을 농화 또는 대량 배양하기 위해서 hollow-fiber 수소 공급장치와 전기화학적 환원력을 복합적으로 이용하는 것이 유리하다는 것을 보여주는 것이다.

M-ferrite를 이용한 열화학적 수소제조 (M=Co,Ni,Mn) (Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn))

  • 조미선;김우진;우성웅;박주식;강경수;최상일
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.69-74
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrite를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites 는 고상법으로 제조하였다. 각각의 M-ferrite에 대한 열적환원은 1573K 에서 진행하였고 물 분해 반응은 1273K 에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF

$Co(OH)_2$로부터 수열법에 의한 코발트 분말제조 (Hydrothermal Reduction of $\Co(OH)_2$ to Cobalt Powder Preparation)

  • 김동진;정헌생
    • 한국재료학회지
    • /
    • 제9권7호
    • /
    • pp.675-679
    • /
    • 1999
  • $PdCl_2$를 촉매제로 사용한 수소환원분위기에서 $Co(OH)_2$ 로부터 약 400nm크기인 구형의 코발트분말 제조에 관한 연구를 수행하였다. 본 실험에서 코발트의 환원반응속도는 표면반응 코어모델식에 잘 일치하였으며 이때 활성화 에너지는 $145~195^{\circ}C$에서 약 55.6KJ/mol 이었다. 또한 코발트의 환원속도는 초기 수소분압의 0.63승에 비례하는 가스화학흡착반응식으로 표시할 수 있다.

  • PDF

M-ferrite를 이용한 열화학적 수소제조(M=Co,Ni,Mn) (Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn))

  • 조미선;김우진;우성웅;박주식;강경수;최상일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.43-46
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrites를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites는 고상법으로 제조하였다. 각각의 M-ferrites에 대한 열적환원은 1573K에서 진행하였고 물 분해 반응은 1273K에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF