• Title/Summary/Keyword: 수소 압축

Search Result 239, Processing Time 0.022 seconds

An Experimental Study on Phenomenon of Backfire in H2 HCCI Engine (예혼합 압축착화 수소기관의 역화현상에 관한 실험적 연구)

  • Lee, Jongmin;Lee, Jonggoo;Lee, Kwangju;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • HCCI (Homogeneous Charged Compression Ignition) hydrogen engine has relatively narrower operation range caused by backfire occurrence due to the rapid pressure rising by using higher compression ratio and significant reaction velocity. In this study, to grasp of backfire process and characteristic in the HCCI research hydrogen engine, in-cylinder pressure, intake pressure and backfire limit range are analyzed with compression ratio and intake valve open timing, experimentally. As the result, it is observed that knock is occurred just before backfire occurrence in HCCI hydrogen engine but not spark igntion type, this phenomenon is always the same for the above variables. Also backfire limit range are expanded up to 50% for the more retarding intake valve open timing in this operating conditions.

An Experimental Study on Internal Temperature Changes of Type Ⅳ Cylinder according to Filling with Compressed Hydrogen Gas (압축수소가스 충전에 따른 타입 IV 용기의 온도 변화에 관한 실험적 연구)

  • Lee, Seung-Hoon;Kim, Youn-Gyu;Yoon, Kee-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.644-647
    • /
    • 2009
  • In this paper, the study is researched for related safety standards having experiments concerning temperature changes in type IV cylinder of the Hydrogen fuel cell vehicle. Experiments were performed to acquire temperature data of type IV cylinder according to filling time. The experimental results are shown that internal temperatures of type Ⅳ vessel are over $85^{\circ}C$ at all measured points after 5 minutes at filling 35 MPa and the highest temperature is getting lower when the residual gases are more remained. Consequently, the safety standards need properly limited value through further study for filling flow rate and filling time.

  • PDF

The application of hydrocarbon refrigerants in a hermetic reciprocating compressor for low back pressure conditions (저온용 밀폐형 왕복동 압축기에서 탄화수소계 냉매 적용)

  • 김기문;박희용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.683-694
    • /
    • 1998
  • The application of hydrocarbon refrigerants in a hermetic reciprocating compressor for refrigerator is investigated. The selected refrigerants are isobutane(R600a), propane(R290), R12, binary mixture of R600a/R290, and OS-21CII. Both theoretical and experimental investigations have been performed for the selected refrigerants. The test results of hydrocarbon refrigerants have been compared to the traditional refrigerant(R12). The results show that hydrocarbon refrigerants(HC-Blend, OS-21C II) are very good alternatives in the refrigeration system for R12.

  • PDF

The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for high back pressure conditions (고온용 밀폐형 왕복동 압축기에서 탄화수소계 혼합냉매 적용)

  • 김기문;박희용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.262-269
    • /
    • 1999
  • The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for dehumidifier is investigated. The selected refrigerants are R12, R134a, HC-Blend (R290/R600a), CX(R152a/R600a) and OS-l2a. Both theoretical and experimental investigations have been performed for the selected refrigerants. The test results of hydrocarbon refrigerants have been compared to traditional refrigerant(R12) and R134a. The results show that hydrocarbon refrigerant mixtures(HC-Blend, CX and OS-l2a) are very good alternatives in the refrigeration system for R12 and R134a.

  • PDF

An Experimental Study on the Performance Characteristics of a Hydrogen Fueled LPi Engine (LPi기관에서 수소첨가에 따른 성능특성에 관한 실험적연구)

  • Choi, Gyeung Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • 환경문제와 석유자원의 고갈이 많은 연구자들을 기존 탄화수소연료를 대체할수 있는 재생 가능한 연료를 구하는데 많은 노력을 기울이고 있다. 수소연료는 유해배기물질이 없는 연소와 또한 연소후에 재생 가능한 물성분만 배출하는 속성으로 미래의 청정에너지로 각광을 받고 있다. 이러한 이유로 수소연료는 수송기계의 연료로도 주목을 받고 있다. 따라서 수소연료기관 개발은 21세기에도 지속적으로 진행될 것이다. 이에대한 초기연구로 기체 LPG 연료가 아닌 액체 LPG 연료를 흡기관에 분사하여 기화된 LPG 연료를 엔진으로 흡입하는 LPi엔진에 수소연료를 과급하여 엔진에 성능을 연구하고자 하였다.

A Study on the Suitable Compression Ratio of Hydrogen Fueled Engine with Dual Injection (이중분사식 수소기관의 적정압축비에 관한 연구)

  • Kim, Y.Y.;Shin, S.W.;Lee, Jong-T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1001-1007
    • /
    • 2001
  • Hydrogen fueled engine with dual injection can achieve high power and high efficiency simultaneously. In this study, the suitable compression ratio of hydrogen fueled engine with dual injection were investigated including performance of this engine according to variation of compression ratio. As results, it was found that the suitable compression ratio of that was about CR=11, and torque and thermal efficiency increased by 6% and 7% respectively.

  • PDF

Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications (연료전지용 터보 공기압축기의 설계 및 시험평가)

  • Choi, Jae-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

Thermal Performance Analysis of Reciprocating Compressors for Refrigerator-freezers (냉장고용 왕복동 압축기의 성능 해석)

  • KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.236-243
    • /
    • 2016
  • This paper presents a simple thermo-physical model of reciprocating compressors for household refrigerator-freezers. The compressor model has been developed based on thermodynamic principles and large data sets from the compressor calorimeter tests. The input data are compressor geometry (displacement and clearance volume), compressor speed, suction pressure and temperature, discharge pressure, and ambient temperature. The model can estimate mass flow rate and compressor power consumption within 3.0% accuracy, which is not much larger than measurement errors associated with calorimeter testing under ideal conditions.

The Effect of Compression Ratio on Combustion and Performance Characteristics of Direct Injection Spark Ignition Hydrogen Fueled Engine. (직접분사식 스파크점화 수소기관의 연소 및 성능특성에 미치는 압축비의 영향)

  • 권병준;이종윤;이종태;이성열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.17-26
    • /
    • 1993
  • As fundamental step to find the suitable compression ratio of hydrogen fueled engine, performance and combustion characteristics of that engine were analyzed. Qualitative characteristics of the hydrogen fueled engine were similar to that of the gasoline engine, and it was also found that knock limit compression ratio of the hydrogen fueled engine was higher than that of the gasoline engine.

  • PDF

A Study on the Relief Valve Modeling and Performance Analysis of Hydrogen Compressor (수소 압축기용 릴리프 밸브 모델링 및 성능해석에 관한 연구)

  • Park, Sang-Beop;Kim, Gyu-Bo;Jeon, Chung-Hwan;Yun, So-Nam;Kewon, Byung-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.179-187
    • /
    • 2009
  • This paper presents a static and dynamic characteristics of the relief valve which is a kind of direct operated pressure control valve for hydrogen compressor. The valve is consisted of a main poppet, a spring, an adjuster and a valve body. The purpose of this study is development of the simulation model for relief valve by using commercial AMESlM$^{(R)}$ tool. Poppet with sharp edge seat type and ball poppet with sharp edge seat type compare for P-Q characteristic. The dynamic simulation results are presented the operating pressure characteristics of relief valve. High pressure power unit of which maximum pressure control range is 100MPa was manufactured, and the pressure control valve was experimented using the above-mentioned power unit. The new model of pressure control valve from this results was suggested. It was confirmed that the suggested valve has a good control performance from experimental setup.