• Title/Summary/Keyword: 수소 안전

Search Result 493, Processing Time 0.026 seconds

Technical Analysis and Future Development of Liquefied Hydrogen Carriers (액화수소 산적 운반선의 기술성 분석 및 향후 개발 과제)

  • Lee, Hyunyong;Kang, Hokeun;Roh, Gilltae;Jung, Inchul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.361-369
    • /
    • 2022
  • Countries worldwide are shifting to a hydrogen economy to respond to stringent environmental regulations, and the transport of hydrogen between countries is expected to increase in the mid- to long-term. Hydrogen is traded between countries in different forms, such as ammonia, liquid hydrogen, and LOHC (Liquid Organic Hydrogen Carrier), on account of the renewable energy resources in exporting countries, the type of hydrogen use in importing countries, and the technological maturity; however, it is not traded only in a singular form. As marine transportation of ammonia and LOHC is a relatively mature technology compared to that of liquid hydrogen, in this article, we analyzed the technical feasibility of liquid hydrogen carriers while identifying detailed technologies required for their future development and securing possible designs through various technical alternatives.

Forecasting of Inspection Demand for Pressure Vessels in Hydrogen Fuel Cell Electric Vehicle using Bass Diffusion Model (Bass 확산모델을 이용한 수소전기차 내압용기 검사수요 예측)

  • Kim, Ji-Yu;Kim, Eui-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.16-26
    • /
    • 2021
  • The global warming problem has arose, the supply eco-friendly vehicles such as HFCEVs is increasing around world and Korea is fully supporting subsidies, tax cut to form an initial market for HFCEVs. The key to the safety of HFCEVs is pressure vessels stored hydrogen, and although these pressure vessels must be inspection regularly, the existing inspection stations are insufficient to meet the demand for inspection. Therefore, it is important to establishment of pressure vessels inspection station for safety management of HFCEVs. In this study, it estimates innovation coefficient, imitation coefficient in Bass model by using electric vehicle sales data, and foretasted the supply of HFCEVs by region & the demand for inspection by region using the Bass diffusion model. As a result, the inspection demand for pressure vessels in HFCEVs in 2040 was 690,759 units, and it was confirmed 191 new inspection stations and 1,124 inspectors were needed to prepare for this.

Evaluation of Structural Safety and Leak Test for Hydrogen Fuel Cell-Based Truck Storage Systems (수소트럭 수소저장시스템에 대한 구조안전성 및 기밀성능평가)

  • Kim, Da-Eun;Yeom, Ji-Woong;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.1-7
    • /
    • 2020
  • Recently, hydrogen has gained considerable attention as an eco-friendly fuel, which helps in reducing carbon dioxide content. Specifically, there is a growing interest in vehicles powered by a hydrogen fuel cell, which is spotlighted as an environmental-friendly alternative. A hydrogen transport system, fuel cell system, fuel supply system, power management system, and hydrogen storage system are key parts of a hydrogen fuel cell truck. In this study, a hydrogen storage system is built and analyzed. The expansion length of the storage vessel at maximum operating pressure (87.5 MPa) was calculated with ABAQUS, and then the optimized system was designed and built. The leak and bubble tests were performed on the built storage system. The leakage of the system was measured to be under 5 cc/hr. Hence, it can be used as a research test for the safety evaluation of leading systems of hydrogen fuel-powered commercial vehicles.

A Study on the Safety of Liquefied Hydrogen Refueling Station through Quantitative Risk Assessment (정량적 위험성평가를 통한 액화수소충전소 안전성 고찰)

  • Woo-Il Park;Seung-Kyu Kang;In-Woo Lee;Yun-Young Yang;Chul-Hee Yu
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • In addition to analyzing the hydrogen economy trends of the international community (Korea, the United States, Europe, Japan, etc.), which is being promoted to realize a carbon-neutral society, this study compared and analyzed the differences between the gaseous hydrogen refueling station, which is a key hydrogen-using facility close to the people, and a liquefied hydrogen refueling station that is scheduled to be built in the future. In addition, SAFETI, a quantitative risk assessment program, was used to analyze the safety of liquefied hydrogen refueling stations and In consideration of the individual and societal risks and the ranking of risks by facility, which are conditional allowable areas, a plan to improve safety such as facility layout was proposed

연료전지 자동차의 고압수소저장에 관한 국제 동향

  • Kiyoshi, Yokogawa;Sin, Hyeong-Seop
    • Journal of the KSME
    • /
    • v.51 no.11
    • /
    • pp.45-50
    • /
    • 2011
  • 연료전지 자동차의 700MPa 고압수소저장을 위한 기술 개발이 진행되고 있다. 고압수소저장에서 재료 문제는 고압수소가스에 재료가 노출되는 데 다른 수소취화가 중요하여 그에 관한 연구가 진행되고 있다. 이 글에서는 차량탑재 용기와 수소 스테이션의 안전성 확보를 위한 규제를 비롯한 수소취화에 대응하여 그 재료 규제에 관한 국제 동향을 소개한다.

  • PDF

Development of Virtual Reality Program for Safety Improvement of Hydrogen Fueling Station (수소충전소의 안전성 향상을 위한 버츄얼리얼리티 프로그램 개발)

  • Kim, Eun-Jung;Kim, Young-Gyu;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.29-33
    • /
    • 2008
  • The focus of this study is to develop a virtual reality program for safe training and virtual reality of hydrogen station. This programme consists of 4 modules such as hydrogen and safety module, hydrogen station module, hypothetical experience module, and accident scenarios module for hydrogen experts. User can experience with principles and operation condition and collect the information of hydrogen station by this programme and can simultaneously study the probable scenarios, emergency response plan/standard operating procedure about hydrogen stations. It makes it possible to educate and safety publicity for the trainee. This virtual reality program will be expected to be helpful for hydrogen station's construction propagation and technology development which is essential for hydrogen energy induction.

  • PDF

A Trends Analysis on Safety for CNG/HCNG Complex Fueling Station (CNG/HCNG 복합충전소의 안전에 관한 동향분석)

  • Lee, Seung-Hyun;Kang, Seung-Kyu;Sung, Jong-Gyu;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this research, the safety trends and technologies of HCNG, a mixture of hydrogen and natural gas, are analyzed. This is an attracting alternative fuels to meet the strengthened automotive exhaust gas emission standards. HCNG is very important opportunities and challenges in that it is available the existing CNG infrastructures, meets the strengthened emission standards, and the technical, social bridge of the coming era of hydrogen. It is essential for the commercialization of HCNG that hydrogen - compressed natural gas blended fuel for use in preparation of various safety considerations included accidents scenario, safety distance, hydrogen attack, ignition sources and fire detectors are examined. Risk assessments also are suggested as one of permission procedure for HCNG filling station.

A Study on the Safety Improvement of PSA System for Hydrogen Separation and Purification (수소분리 및 정제를 위한 PSA(Pressure Swing Adsorption)시스템 안전성향상에 관한 연구)

  • Oh, Sang-Gyu;Lee, Seul-Gi;Lee, Jun-Seo;Ma, Byung-Chol
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.7-19
    • /
    • 2022
  • Hydrogen purification is generally performed through chemical and physical methods. Among various types of purification method PSA(Pressure Swing Adsorption) is widely used with its purification capacity and economic efficiency. In Korea, most of the hydrogen used in automobiles and power generation fuel cells is purified using PSA. Hydrogen produced in petrochemical complexes has difficulties in transportation. The government is planning to install hydrogen extractors that produce hydrogen directly from consumers in connection with the city gas supply chain, and companies are also installing related research and demonstration facilities one after another. Europe and others have recently established safety standards related to PSA and are making efforts for systematic safety management at the construction and operation stage, but domestic safety standards related to PSA are still insufficient. This study aims to identify problems of existing facilities through surveys and risk assessment by companies operating existing PSA, and to prepare domestic technical standards including them in overseas technical standards to promote the safety of new and existing PSA systems.

Hydrogen Refueling Stations Improving Safety and Economic Feasibility (안전성과 경제성이 개선된 수소충전소)

  • YunSil Huh;DongHoon Lee;Yongjin Chung;Yongchai Kwon
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.611-618
    • /
    • 2023
  • The purpose of the refueling protocol and the contents of SAE J2601, which is used as the basis for hydrogen vehicles refueling around the world, were investigated, and research contents related to domestic protocols were also investigated. In addition, the components of the hydrogen refueling performance evaluation device developed in Korea and the method for evaluating the performance and safety of hydrogen refueling stations were reviewed. And, the result were analyzed by applying it to the hydrogen refueling stations currently operating in Korea. In addition, an economic feasibility analysis was conducted using data collected from domestic hydrogen refueling stations. In order to secure the safety and economy of a hydrogen refueling station, the protocol must be satisfied, and in order to satisfy the protocol, it is necessary to evaluate whether the refueling temperature, refueling pressure, and refueling flow are controlled within a safe range.

A Study on the Quantitative Risk Assessment of Mobile Hydrogen Refueling Station (이동식수소스테이션 정량적 위험성평가에 관한 연구)

  • KIM, DONG-HWAN;LEE, SU-MIN;JOE, CHOONG-HEE;KANG, SEUNG KYU;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.605-613
    • /
    • 2020
  • In July and October of this year, the government announced the 'Green new deal plan within the Korean new deal policy' and 'Strategies for proliferation of future vehicles and market preoccupation'. And, in response to changes in the global climate agreement, it has decided to expand green mobility such as electric vehicles and hydrogen electric vehicles with the aim of a "net-zero" society. Accordingly, the goal is to build 310 hydrogen refueling stations along with the supply of 60,000 hydrogen vehicles in 2022, and the hydrogen infrastructure is being expanded. however, it is difficult to secure hydrogen infrastructure due to expensive construction costs and difficulty the selection of a site. In Korea, it is possible to build a mobile hydrogen station according to the safety standards covering special case of the Ministry of Industry. Since the mobile hydrogen station can be charged while moving between authorized place, it has the advantage of being able to meet a large number of demands with only one hydrogen refueling station, so it is proposed as a model suitable for the early market of hydrogen infrastructure. This study demonstrates the establishment of a hydrogen refueling station by deriving a virtual accident scenario for leakage and catastrupture for each facility for the risk factors in a mobile hydrogen station, and performing a quantitative risk assessment through the derived scenario. Through the virtual accident scenario, direction of demonstration and implications for the construction of a mobile hydrogen refueling station were derived.