• Title/Summary/Keyword: 수소 발생기

Search Result 326, Processing Time 0.024 seconds

Influence of the Asian Monsoon on Seasonal Fluctuations of Water Quality in a Mountainous Stream (산간 계류성 하천의 계절적 수질변동에 대한 몬순강우의 영향)

  • Shin, In-Chul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.54-62
    • /
    • 2005
  • The present study was to determine how seasonal rainfall intensity influences nutrient dynamics, ionic contents, oxygen demands, and suspended solids in a lotic ecosystem. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of rainfall. Dissolved oxygen (DO) had an inverse function of water temperature (r = = = - 0.986, p<0.001). Minimum pH values of<6.5 were observed in the late August when rainfall peaked in the study site, indicating an ionic dilution of stream water by precipitation. Electrical conductivity (EC) was greater during summer than any other seasons, so the overall conductivity values had direct correlation (r = 0.527, p<0.01) with precipitation. Ionic dilution, however, was evident 4 ${\sim}$ 5 days later in short or 1 ${\sim}$ 2 weeks in long after the intense rain, indicating a time-lag phenomenon of conductivity. Daily COD values varied from 0.8 mg $L^{-1}$ to 7.9 mg $L^{-1}$ and their seasonal pattern was similar (r = 0.548, p<0.001) to that of BOD. Total nitrogen (TN) varied little compared to total phosphorus (TP) and was minimum in the base flow of March. In contrast, major input of TP occurred during the period of summer monsoon and this pattern was similar to suspended solids, implying that TP is closely associated (r = 0.890, p<0.01) with suspended inorganic solids. Mass ratios of TN : TP were determined by TP (r= -0.509, p<0.01) rather than TN (r= -0.209, p<0.01). The N : P ratios indicated that phosphorus was a potential primary limiting nutrient for the stream productivity. Overall data suggest that rainfall intensity was considered as a primary key component regulating water chemistry in the stream and maximum variation in water quality was attributed to the largest runoff spate during the summer monsoon.

Characteristic evaluation of anaerobic co-digestion using desulfurization sludge and primary sludge (탈황슬러지 및 생슬러지를 이용한 혐기성 병합소화 특성평가)

  • Seulki Koo;Woojin Chung;Soonwoong Chang;Myoungsoo Park
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.51-58
    • /
    • 2023
  • In this study, anaerobic co-digestion was carried out using desulfurization sludge and sewage sludge (primary sludge) to evaluate the effects of sulfur compounds in anaerobic digestion. The experiment was carried out in the form of a batch test using 500 mL duran bottle, and the mixing ratio of the feedstock was selected based on the ratio of COD/SO4. As a result of the experiment, it was confirmed that the amount of biogas generated and the yield decreased at the mixing ratio of COD/SO4 20 or less. In particular, below COD/SO4 10, it was lower than seed (283.5 mL) which was set without feedstock to correct biogas generated by itself from seed sludge. Methane yield tended to decrease from a ratio of COD/SO4 20 or less to 0.135 m3/kg VS compared to 0.396 m3/kg VS of COD/SO4 50. In addition, compared to 0.0097 m3/kg VS of hydrogen sulfide yield from COD/SO4 50, the ratio of COD/SO4 20 increased sharply to 0.0223 m3/kg VS, and in particular, the highest result was 0.0855 m3/kg VS in COD/SO4 10. Based on these results, it is judged that the effect of sulfide in anaerobic digestion can have an adverse effect if the COD/SO4 ratio decreases to less than 20.

Effect of Relative Humidity on Physiology and Antioxidant Metabolism of Grafted Watermelon Seedlings (상대습도가 수박 접목묘의 생리 및 항산화 대사에 미치는 영향)

  • Wei, Hao;Manivannan, Abinaya;Muneer, Sowbiya;Kim, SooHoon;Ya, Liu;Park, Ji Eun;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • This study investigated the effect of different relative humidity (RH) regimes on graft healing of grafted seedlings of watermelon (Citrullus vulgaris Schrad.). Two watermelon cultivars ('Speed' and 'Sambok Honey') were grafted onto the 'RS-Dongjanggun' bottle gourd rootstock (Lagenaria siceraria Stanld.) and the grafted seedlings were maintained under one of three relative humidity regimes, 95-96% [1.1-0.8 (day) or $0.8-0.6(night)\;g{\cdot}m^{-3}$ vapor pressure deficit (VPD)], 97-98% [ 0.7-0.4 (day) or $0.5-0.3(night)\;g{\cdot}m^{-3}$ (VPD)], or 99-100% [0.3-0.0 (day) or $0.2-0.0(night)\;g{\cdot}m^{-3}$ (VPD)] according to the Mollier diagram based on the air temperature of $25^{\circ}C\;day/18^{\circ}C\;night$ with 16 h photoperiod per day. Among the RH treatments, 97-98% significantly increased plant height and fresh weight of the rootstock and scion of the 'Speed' and it also enhanced the graft union connection of both cultivars after two days of grafting. However, plant height and thickness of the scion of 'Sambok Honey' was increased by the 99-100% RH treatment. Furthermore, both cultivars grown in the 95-96 and 97-98% RH treatments consisted of lower levels of endogenous $H_2O_2$ and less activities of antioxidant enzymes which illustrated the occurrence of less oxidative stress. Hence, the results of this study identified the optimal RH level for the graft healing of watermelon seedlings.

Membrane Process Using Polysulfone Hollow Fiber Membranes for Vehicle Fuel Production from Bio-Methane Mixture (폴리설폰 중공사막 모듈을 이용한 자동차 연료용 고순도 바이오메탄 분리공정 연구)

  • Kim, Jee Sang;Kong, Chang In;Park, Bo Ryoung;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.213-222
    • /
    • 2014
  • In this study, 2-stage recirculation membrane process was developed for purification of high purity bio-methane for the vehicle fuel application. Pure gas permeation and mixture gas permeation test were done as a function of methane content and pressure in the feed using polysulfone membrane modules. 2-stage membrane plant was designed, constructed in a food waste treatment cite. Dehumidification, dry desulfurization, and desiloxane plants are installed for the removal of $H_2O$, $H_2S$ and siloxane in the biogas. Permeation test were done with the pre-treated methane mixture in terms of methane purity and recovery by adjusting the ratio of membrane area (1:1, 1:3, 2:2) in the first and second membrane modules in the plant. When membrane area of 2 stage increased to $3m^2$ from $1m^2$ at 1-stage membrane area of $1m^2$, the feed rate and $CH_4$ recovery at 95% methane purity were increased from 47.1% to 92.5% respectively. When the membrane area increased two-fold (1:1 to 2:2), $CH_4$ recovery increased from 47.1% to 88.3%. When the feed flow rate was increased, in 1:3 ratio, final purity of the methane is reduced, the methane recovery is increased. When operating pressure was increased, the feed rate was increased and recovery was slightly decreased. From this result, membrane area, feed pressure and feed rate could be the important factor to the performance of the membrane process.

Firefighters' Exposures to Polynuclear Aromatic Hydrocarbons and Volatile Organic Compounds by Tasks in Some Fire Scenes in Korea (일부 화재현장에서 소방공무원의 직무별 다핵방향족탄화수소 및 휘발성유기화합물 노출평가)

  • Jin, Suhyun;Byun, Hyaejeong;Kang, Taesun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.477-487
    • /
    • 2019
  • Objectives: Firefighters are known to be exposed to a variety of toxic substances, but little information is available on the exposure profile of firefighting activities. The aims of this study were to conduct exposure monitoring of toxic chemicals at fire scenes, to compare the concentrations of respective chemicals among firefighting tasks, and to assess the main factors influencing the concentrations of chemicals. Methods: Researchers performed sampling at firefighting scenes during four weeks in 2013. At the scene, we collected samples based on firefighters' own activities and examined the situation and scale of the accident. Collected samples were classified into three categories, including fire extinguishing and overhaul, and were analyzed in the laboratory according to respective analysis methods. Results: A total of fourteen fire activity events were surveyed: five fire extinguishing, six overhaul, and three fire investigations. Although no substance exceeded the ACGIH TLV, PAHs were detected in every sample. Naphthalene ranged from 0.24 to 279.13 mg/㎥ (median 49.6 mg/㎥) and benzo(a)pyrene was detected in one overhaul case at 10.85 ㎍/㎥. Benzene (0.01-12.2 ppm) was detected in every task and exceeded the ACGIH TLV. No significant difference in concentrations between tasks was shown. Conclusions: These results indicate that all firefighting tasks generated various hazardous combustion products, including possible carcinogens.

Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes (펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리)

  • Bae, Jae-Sang;Kim, Jong-Hyang;Choi, Jung-Hye;Ekpeghere, Kalu I.;Kim, Soo-Gon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.356-363
    • /
    • 2011
  • The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.