• Title/Summary/Keyword: 수소 누출

Search Result 117, Processing Time 0.027 seconds

A Hydrogen Sensor Experiment on the Ventilation Performance of a Cavity upon Hydrogen Leakage and Its CFD Simulation (수소 센서를 이용한 밀폐공간의 수소 누출 시 환기성능에 대한 실험 및 CFD 시뮬레이션)

  • Kim, Young-Doo;Shin, Dong-Hoon;Chung, Tae-Yong;Nam, Jin-Hyun;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.59-62
    • /
    • 2007
  • 연료전지는 수소를 이용하여 전기를 생산하는 발전 시스템으로 운전 중 수소 누출과 폭발의 위험성을 항상 수반하고 있다. 따라서 안전성의 확보를 위해 연료전지 시스템 내부에서 수소 누출 시 유e동 특성으로 인한 특정 부근 농도 정체와 환기의 영향을 파악하는 것이 필요하다. 실험 장치와 전산유체역학 프로그램을 사용하여 챔버 내 수소의 유통 특성과 환기구에 따른 환기의 영향을 확인하였다. 수소의 누출 속도와 양에 따라 유동장의 형태는 크게 변하였으며 환기구의 위치와 크기는 특정 부근의 농도정체와 챔버 내 전체적인 수소 농도에 영향을 미침으로서 안정성을 확보하는 중요한 인자임을 알 수 있었다. 예측 결과를 실제 실험 모델과 비교하여 그 타당성을 검토하였으며 차후 가정용 연료전지 모듈의 환기구 설계에 적용할 수 있다.

  • PDF

A study of jet dispersion and jet-fire characteristics for safety distance of the hydrogen refueling station (수소충전소 안전거리 설정을 위한 수소제트 및 화염 특성 분석)

  • Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.74-80
    • /
    • 2019
  • Hydrogen refueling stations that use compressed hydrogen at high pressure provide safety distances between facilities in order to ensure safety. Most accidents occurring in hydrogen stations are accidental leaks. When a leak occurs, various types of ignition sources generate a jet flame. Therefore, the analysis of leaked gas diffusion and jet flame due to high pressure hydrogen leakage is one of the most important factor for setting the safety distance. In this study, the leakage accidents that occur in the hydrogen refueling station operated in high pressure environment are simulated for various leakage source sizes. The results of this study will be used as a reference for the future safety standards.

A CFD Study on Unsteady and Steady State of the Hydrogen Leakage for Residential Fuel Cell System (가정용 연료전지 시스템 내부 수소 누출의 비정상 및 정상 상태에 관한 전산 해석)

  • Chung, Tae-Yong;Ahn, Jae-Uk;Nam, Jin-Hyun;Shin, Dong-Hoon;Kim, Young-Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.41-46
    • /
    • 2007
  • The residential fuel cell system was modeled as a box-shaped chamber with vent openings, filled with various components such as reformer, desulfurizer, fuel cell stack and humidifier. When the vent openings are 1% of the total surface and hydrogen leakage 1%, hydrogen concentration is around 0.1% higher than the other regions from leak points in the chamber at 30 seconds and hydrogen concentration is increased from 0.3% to 0.7% in the upper region of the system after 200 seconds. When the vent openings are 1% of the total surface and hydrogen leakage 1%, 3%, 5%, the steady state result of CFD, 5% of hydrogen leakage is reached the lowest ignition limit in the system. When the vent openings are 2% of the total surface and hydrogen leakage 1%, hydrogen concentration is increased in the bottom of the system for 60 seconds. After 250 seconds, hydrogen concentration is reached the steady state in the system. As the vent opening of the total surface increased from 1% to 2%, averaged hydrogen mole fraction is under 1% in the system, however, upper regions of the system from the hydrogen leakage points are shown over 1% of hydrogen mole fraction.

  • PDF

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

Inplementation of a Hydrogen Leakage Simulator with HyRAM+ (HyRAM+를 이용한 수소 누출 시뮬레이터 구현)

  • Sung-Ho Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.551-557
    • /
    • 2024
  • Hydrogen is a renewable energy source with various characteristics such as clean, carbon-free and high-energy, and is internationally recognized as a "future energy". With the rapid development of the hydrogen energy industry, more hydrogen infrastructure is needed to meet the demand for hydrogen. However, hydrogen infrastructure accidents have been occurring frequently, hindering the development of the hydrogen industry. HyRAM+, developed by Sandia National Laboratories, is a software toolkit that integrates data and methods related to hydrogen safety assessments for various storage applications, including hydrogen refueling stations. HyRAM+'s physics mode simulates hydrogen leak results depending on the hydrogen refueling station components, graphing gas plume dispersion, jet frame temperature and trajectory, and radiative heat flux. In this paper, hydrogen leakage data was extracted from a hydrogen refueling station in Samcheok, Gangwon-do, using HyRAM+ software. A hydrogen leakage simulator was developed using data extracted from HyRAM+. It was implemented as a dashboard that shows the data generated by the simulator using a database and Grafana.

Hazard Distance from Hydrogen Accidents (수소가스사고의 피해범위)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • An analysis was completed of the hazards distance of hydrogen accidents such as jet release, jet fire, and vapor cloud explosion(VCE) of hydrogen gas, and simplified equations have been proposed to predict the hazard distances to set up safety distance by the gas dispersion, fire, and explosion following hydrogen gas release. For a small release rate of hydrogen gas, such as from a pine-hole, the hazard distance from jet dispersion is longer than that from jet fire. The hazard distance is directly proportional to the pressure raised to a half power and to the diameter of hole and up to several tens meters. For a large release rate, such as from full bore rupture of a pipeline or a large hole of storage vessel, the hazard distance from a large jet fire is longer than that from unconfined vapor cloud explosion. The hazard distance from the fire may be up to several hundred meters. Hydrogen filling station in urban area is difficult to compliance with the safety distance criterion, if the accident scenario of large hydrogen gas release is basis for setting up the safety distance, which is minimum separation distance between the station and building. Therefore, the accident of large hydrogen gas release must be prevented by using safety devices and the safety distance may be set based on the small release rate of hydrogen gas. But if there are any possibility of large release, populated building, such as school, hospital etc, should be separated several hundred meters.

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

A Study on the Improvement of Safety of Unloading Site by Comparison of Hydrogen Fluoride Leakage Accident (불화수소 누출사고 비교를 통한 하역작업장의 안전성 향상방안에 관한 연구)

  • Woo, Jongwoon;Shin, Changsub
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.32-38
    • /
    • 2018
  • The purpose of this study is to assess quantitatively the amount of leaks and the extent of dispersion in case of a leak at a hydrogen fluoride tank container unloading station, and to suggest a safety improvement plan to prevent recurrence of similar accidents. In 2012, Company H leaks 8 tonnes of tank containers with a maximum storage capacity of 18 Ton, causing it to become a social issue. As a result of calculation using Gaussian plume model, the concentration was estimated to be more than 20ppm from the leak point to 1,321 m radius. The leakage of hydrogen fluoride from the company R in 2014 was estimated to be 11.02 kg, of which 2.9 kg was treated by the scrubber. As a result of calculation using Gaussian plum model, the damage range with a concentration of 20ppm or more from the leak source was estimated to be 69 m in radius. As a result of comparing the above two accidents, it was found that the leakage amount was about 987 times different and the damaged site was more than 19 times different. Therefore, it was concluded that it was necessary to control the wearing of the protective equipment, the enclosure of the unloading site, the installation of the scrubber, and the emergency training to avoid the accidental leakage of a hydrogen fluoride from the unloading site.

Dispersion Characteristics of Hydrogen Gas by the Effect of Leakage Hole Size in Enclosure Space (누출공 크기에 따른 밀폐공간 내 수소 가스의 확산 특성)

  • Choi, Jinwook;Li, Longnan;Park, Chul-Woo;Lee, Seong Hyuk;Kim, Daejoong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.26-35
    • /
    • 2016
  • As a potential clean energy resource, the production and consumption of hydrogen gas are expected to gradually increase, so that hydrogen related studies are also increasing. The thermal and chemical properties of hydrogen result in its high flammability; in particular, there is a high risk if leaks occur within an enclosed space. In this study, we applied the computational fluid dynamics method to conduct a numerical study on the leakage behavior of hydrogen gas and compared these numerical study results with an experimental study. The leakage hole diameter was selected as an important parameter and the hydrogen gas dispersion behavior in an enclosed space was investigated through various analytical methods. Moreover, the flammable regions were investigated as a function of the leakage time and leakage hole size. We found that the growth rate of the flammable region increases rapidly with increasing leakage hole size. We also investigated the relation between the mass flow rate and the critical time when the hydrogen gas reaches the ceiling. The analysis of the monitoring points showed that the hydrogen gas dispersion behavior is isotropic and independent of the geometry. We found that the concentration of gas in an enclosed space is affected by both the leakage flow rate and amount of gas accumulated in the enclosure.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).