• Title/Summary/Keyword: 수산소 가스

Search Result 10, Processing Time 0.022 seconds

Hydrox Generator for Steel Manufacturing (철강재료 가공용 수산소 혼합가스 발생기)

  • Kim, Hong-Gun;Kwac, Lee-Ku;Lee, Woo-Gum;Cha, Hwa-Dong;Shin, Jooung-Dal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 2011
  • A low capacity generator converted to high capacity of 40m3 is designed and developed in order to use the hydroxy gas in the steel manufacturing process. For efficient design, it is increased from 8 electrode tubes to 10 electrode tubes as well as expanding the diameter of cell integument up to two times bigger, which can increase the amount of hydrogen occurrence per a cell significantly. In addition, circulating pump and pipe, heat exchanger of affiliated SUS material have been used in the circulation of electrolysis catalyst, and circulating cooling section and piping design are also developed. The flame trap is designed into all-in-one suitable check valve in the flow rate of 28-35m3/h and its application is possibly applied in work operation. It is found that the efficiency of generator developed is enhanced substantially up to 84%. It is expected that the application in this field can be expanded significantly by this study.

A Study on the Characteristics of Mixed Combustion for Hydrox Gas (Hydrox Gas 혼합연소특성 에 관한 연구)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.230-234
    • /
    • 2010
  • Hydrox gas which is the mixed gas of hydrogen and oxygen gained fromwater electrolysis is one of the new clean energy sources and thus is researched and commercialized actively. Especially, it can be replaced the fossil energy and shows the better quality compared to the conventional energy such as LPG or acetylene gas. The mixed gas of hydrogen and oxygen is gained from water electrolysis reaction. It has constant volume ratio 2:1 of hydrogen and oxygen, and it is used as a source of thermal energy by combustion reaction. Further, hydrox gas is nearly a mixed ideal gas combusting itself completely and its combustion shows anunique characteristics of implosion. In this study, temperature rise effects on hydrox gas content through mixed combustion test of kerosene and hydrox gas and LPG and hydrox gas are investigated. it is also confirmed that economy of mixed combustion of hydrox gas as effective energy is fairly probable.

부산항 북항과 신항 터미널 탄소배출량 비교 연구

  • 김우선
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.243-245
    • /
    • 2022
  • 수소사회로의 전환에 따라 수소확보가 가장 중요한 화두로 떠오르고 있으며, 외국에서 수입하는 수소의 보관 및 유통을 위한 국내 수소보관, 유통을 위한 항만구축 방안을 제시함

  • PDF

The Characteristics of Line Heating Using Hydrox Gas (수산소 혼합가스를 이용한 선상가열 특성)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.407-411
    • /
    • 2011
  • The technology of line heating has evolved in various methods. Among them, fossil fuels like ethylene gas and LPG(Liquid Petroleum Gas) are widely used due to their simple utility. In the meantime, the technology implementing high frequency for line heating has also been developed continually, but its manufacturing technology or application includes lots of problems by now. One of the main characteristics of line heating using conventional technolob'Y is the quenching effect followed by heating process. On the other hand, hydrox gas which is mixed by hydrogen and oxygen is a prominent candidate for an application without above shortcomings. Especially, it is found that line heating using hydrox gas is tremendously effective taking low cost as well as low noise. In this paper, a small cell with high efficiency which can minimize installing space is developed to deal with the problem installing in narrow place. Experiments to prove the validation, efficiency and effectiveness is carried out by characterizing in the line heating of steel. It is found that the energy saving of using hydrox gas for line heating is significant and that the deviation performance is reduced by 78~89%. Furthermore, the noise is also reduced as amount of 18.3% though the heating time is not too different.

A Study on the Thermal Characteristics of LPG and Hydrox Gas Cutting (Hydrox Gas 절단과 LPG 절단의 열적특성에 관한 연구)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.301-305
    • /
    • 2010
  • Cutting procedures where qualities are determined by various demand factors largely influences shipbuilding productivity. Particularly, defects in cutting shapes and cutting surface results in delay for post shipbuilding stages such as in welding and assemblage lines which could become factors for reduced economic viability of the project. Existing cutting procedures utilize fossil fuels such as propane or ethylene as the main fuel component and these methods applied particularly to ship plate cutting gives relatively slow cutting speed and generates large quantities of harmful and sometimes poisonous polluting fumes of which warrants an urgent need to look for alternative cutting methods. Recent introduction of hydrox gas generated by electrically dissociating water into hydrogen and oxygen components to be utilize as an alternative cutting fuel has resulted not just in visible improvement on cutting quality and speed over the existing methods but it has also been welcomed as an environmentally friendly clean fuel source. This paper has been prepared to serve as the basis for accommodating this environmentally friendly hydrox gas cutting method into actual working environment by observing and recording hydrox gas cutting thermal characteristics.

Evaluation of the Effects of Sulfur Dioxide Gas on the Yield of Soybean in an Industrial Complex Area Using the Isoquant Contour Lines of Sulfur Dioxide (공단지역의 대기 아황산가스 등농도곡선에 의한 콩의 수량에 미치는 아황산가스의 영향 평가)

  • Soh, Chang-Ho;Kwon, Yong-Woong;Han, Young-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.283-289
    • /
    • 1993
  • Effect of sulfur dioxide gas on the growth and yield of soybean growing in the On-San Industrial Complex area was evaluated using the isoquant contour lines of the sulfur dioxide in air of the area. Average concentration of sulfur dioxide monitored in the Industrial Complex from July 17 to September 17 was 0.77mg / 100cm$^2$ PbO$_2$/day. Soil pH ranged from 4.2 to 6.5. Yield losses were estimated by 5~30% due to the effect of sulfur dioxide. Liming could relieve the yield reduction to some extent. The cumulative $SO_2$ concentration, as measured by PbO$_2$ method, for two months of active vegetative growth to early ripening stage has shown a good negative correlation with soybean yield. But, pod number and 100 grain weight did not show the correlation with the concentration of sulfur dioxide. These results suggest that sulfur dioxide affect chronically and cumulatively the growth of soybean plants.

  • PDF

미소조류의 응용연구(개관) (Applied Researches on Microalgae(Overview))

  • YIH Won-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.205-218
    • /
    • 1992
  • Trends in the applied microalgal researches were described as those in two separate periods. During the first period (earlie. than 1970) . most researches were oriented to using the whole microalgal cells as feed, food, fertilizer, and agent for the treatment of organic waste water. Since early 1970's (the second period) the number of researches on the production of specific cell metabolites has grown so rapidly. Many researchers endeavored after the very expensive 'natural products' form microalge such as vitamins, amino acids, $\beta-carotene$, phycofluor, pharmaceuticals, biologically active compounds, $H_2$ gas, and deutrated chemicals. On the other hand, the applied microalgal researches in Korea are still in the early stage of developments, and urgent activation of the related researchers is quite important to meet the future needs in the microalgal products. Systems for the management of the management of the microalgal clonal cultures from Korean waters should be established soon, which will support many microalgal researchers in Korea.

  • PDF

Numerical Analysis on Development of Nozzle Shape for NOVEC Gas Extinguishing System (NOVEC가스 소화설비용 노즐 형상 설계에 대한 수치해석)

  • Yun, Jeong In;Jung, Kyung Kuk;Kim, Ji Sung;Kim, Sung Yoon;Rho, Beom-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.939-944
    • /
    • 2018
  • Clean fire extinguishing agents refer to chemical that can replace Halon 1211 and Halon 1310 according to the Montreal Protocol fermented to protect the Earth's ozone layer. In Korea and abroad, system standardization and performance evaluation of clean fire extinguishing agents are being carried out. This paper proposes an optimal nozzle shape by modeling and numerical analysis of various nozzle shapes based on general clean fire extinguishing system. The ejection speed of the nozzle can be improved by studying three - dimensional modeling of the nozzle for two shapes, Type A and B. Flow analysis was performed on the two types of nozzles and the gas velocity and pressure distribution were measured with different nozzle diameters. It was confirmed that the jetting speed was changed at the nozzle outlet according to the number and diameter of the nozzle holes. The flow rate increased with increasing the pressure regardless of the nozzle hole diameter. Based on the results obtained from the experiment, the K-factor value was deduced. Finally, a nozzle with a 12-hole structure with a 5-mm nozzle hole was proposed.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

The Latest Progress on the Development of Technologies for $CO_2$ Storage in Marine Geological Structure and its Application in Republic of Korea (해저 지질구조내 $CO_2$ 저장기술의 연구개발 동향 및 향후 국내 실용화 방안)

  • Kang, Seong-Gil;Huh, Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • To mitigate the climate change and global warming, various technologies have been internationally proposed for reducing greenhouse gas emissions. Especially, in recent, carbon dioxide capture and storage (CCS) technology is regarded as one of the most promising emission reduction options that $CO_2$ be captured from major point sources (eg., power plant) and transported for storage into the marine geological structure such as deep sea saline aquifer. The purpose of this paper is to review the latest progress on the development of technologies for $CO_2$ storage in marine geological structure and its perspective in republic of Korea. To develop the technologies for $CO_2$ storage in marine geological structure, we carried out relevant R&D project, which cover the initial survey of potentially suitable marine geological structure fur $CO_2$ storage site and monitoring of the stored $CO_2$ behavior, basic design for $CO_2$ transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to $CO_2$ storage in geological structure in republic of Korea. By using the results of the present researches, we can contribute to understanding not only how commercial scale (about 1 $MtCO_2$) deployment of $CO_2$ storage in the marine geological structure of East Sea, Korea, is realized but also how more reliable and safe CCS is achieved. The present study also suggests that it is possible to reduce environmental cost (about 2 trillion Won per year) with developed technology for $CO_2$ storage in marine geological structure until 2050.

  • PDF