• Title/Summary/Keyword: 수문특성분석

Search Result 1,290, Processing Time 0.029 seconds

A Numerical Model for Analysis of Groundwater Flow with Heat Flow in Steady-State (열(熱)흐름을 동반(同伴)한 정상지하수(定常地下水)의 흐름해석(解析) 수치모형(數値模型))

  • Wang, Soo Kyun;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.103-112
    • /
    • 1991
  • In this study, a numerical model was established and applied to simulate the steady-state groundwater and heat flow in an isotropic, heterogeneous, three dimensional aquifer system with uniform thermal properties and no change of state. This model was developed as an aid in screening large groundwater-flow systems as prospects for underground waste storage. Driving forces on the system are external hydrologic conditions of recharge from precipitation and fixed hydraulic head boundaries. Heat flux includes geothermal heat-flow, conduction to the land surface, advection from recharge, and advection to or from fixed-head boundaries. The model uses an iterative procedure that alternately solves the groundwater-flow and heat-flow equations, updating advective flux after solution of the groundwater-flow equation, and updating hydraulic conductivity after solution of the heat-flow equation. Dierect solution is used for each equation. Travel time is determined by particle tracking through the modeled space. Velocities within blocks are linear interpolations of velocities at block faces. Applying this model to the groundwater-flow system located in Jigyung-ri. Songla-myun, Youngil-gun. Kyungsangbuk-do, the groundwater-flow system including distribution of head, temperature and travel time and flow line, is analyzed.

  • PDF

Evaluation of the behavior and quality in soil moisture data: A case study of Yongdam study watershed (토양수분 데이터의 거동 및 품질 평가: 용담시험유역 사례연구)

  • Lee, Seulchan;Baik, Jongjin;Choi, Minha;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.951-962
    • /
    • 2019
  • Producing consistent, accurate soil moisture data to be utilized as a reference dataset for researches related to hydrological cycle and natural disaster is being critical, but such techniques (e.g. quality control) are still limited to improve reliability of soil moisture data. In this study, analyses of soil moisture's behavior and quality control based on International Soil Moisture Network's (ISMN's) criteria were carried out in Yongdam study watershed, which is UNESCO-IHP' representative examination area in South Korea, to suggest a direction to improve the quality of soil moisture data. The results of the behavior analysis showed normal increasing/decreasing patterns following precipitation events in all stations except two (i.e. Bugui, Ancheon). As a result of applying quality flagging technique, there were no observation recordings in abnormal range, and freezing of soil moisture occurred within general range (~20%). Soil moisture rise without prior rainfall appeared about 4% and there were less than 0.01% for spike and 5% for plateau. Producing more reliable reference data will be possible if site-specific criteria for quality control are considered enough in the future.

An analysis of trends in wetland function assessments and further suggestions (습지 기능 평가의 동향 분석 및 제언)

  • Hong, Mun Gi;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Wetland function assessment is not only a basic step to understand wetland ecosystems in detail but also an important process as a base of the term, ecosystem service to recognize wetland ecosystems as valuable and useful resources and goods for human being. WET (wetland evaluation technique), EMAP (environmental monitoring assessment program)-wetlands, and HGM (hydrogeomorphic method) were developed as pioneer wetland function assessments in U.S. at the end of $20^{th}$-century. RAMs (rapid assessment methods) became a major function assessment tool which is relatively simpler and easier assessment tool at the beginning of $21^{th}$-century. After that, the hierarchy of three levels of assessment (landscape assessment, rapid assessment, and intensive assesment) has been prepared and strategically utilized according to the objectives and purposes of function assessments. In South Korea, RAM and HGM were used to assess wetland functions with reforming a couple of items and contents at 2001. And, modified and reformed function assessments have been developed to complement and improve upon the existing RAMs and HGMs. Via the trend analysis on wetland function assessments, some needs which require supplements in terms of function assessment are pointed out: 1) wetland function assessments using useful indicators such as birds are needed with considering our environmental characteristics. 2) optimized wetland function assessments for coastal wetlands are also needed. 3) the network construction and further expansion to lead communications and co-operations between researchers and policy makers is needed in the field of wetland function assessment.

Multi-variable and Multi-site Calibration and Validation of SWAT for the Gap River Catchment (갑천유역을 대상으로 SWAT 모형의 다 변수 및 다 지점 검.보정)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Jun-Woo;Jang, Chang-Lae;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.867-880
    • /
    • 2006
  • Hydrological models with many parameters and complex model structures require a powerful and detailed model calibration/validation scheme. In this study, we proposed a multi-variable and multi-site calibration and validation framework for the Soil Water Assessment Tool (SWAT) model applied in the Gap-cheon catchment located downstream of the Geum river basin. The sensitivity analysis conducted before main calibration helped understand various hydrological processes and the characteristics of subcatchments by identifying sensitive parameters in the model. In addition, the model's parameters were estimated based on existing data prior to calibration in order to increase the validity of model. The Nash-Sutcliffe coefficients and correlation coefficient were used to estimate compare model output with the observed streamflow data: $R_{eff}\;and\;R^2$ ranged 0.41-0.84 and 0.5-0.86, respectively, at the Heuduck station. Model reproduced baseflow estimated using recursive digital filter except for 2-5% overestimation at the Sindae and Boksu stations. Model also reproduced the temporal variability and fluctuation magnitude of observed groundwater levels with $R^2$ of 0.71 except for certain periods. Therefore, it was concluded that the use of multi-variable and multi-site method provided high confidence for the structure and estimated parameter values of the model.

Urban Drainage Simplification Using Meta-channel Concept (등가하천 개념을 이용한 관망 간략화 기법에 대한 연구)

  • Kim, Hwan-Seok;Pak, Gi-Jung;Yoon, Jae-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1194-1199
    • /
    • 2007
  • 본 연구에서는 도시배수관망의 간략화 모의 시 지선을 단순 생략하는 것이 아니라 2차원 관망을 1차원으로 전환시키는 방법인 등가하천 개념을 도입하여 도시유역의 유출량 산정에 있어서 여러 지선들을 개별적으로 모의하지 않으면서도 실제 존재하는 지선들의 효과를 고려할 수 있는 방법을 개발하고자 하였다. 자연하천에 대해 개발된 등가하천 개념은 최근의 수문모형의 경향인 물리적 분포형 모형의 복잡성을 피하면서 전통적인 개념적 집중형 모형이 가지는 간편성을 살리고 그 것이 가지고 있는 선형가정의 한계를 극복하기 위한 방안으로서 제안된 방법이다. 등가하천 개념을 도입하여 개발된 모형은 종국적으로 강우-유출관계에 있어서 강우의 크기, 선형 및 비선형성, 유역면적 등이 미치는 영향을 분석하기위한 도구로 개발되었으며, 본 연구에서는 출구로부터 동일 거리 s에 위치한 지점에서의 배수관망의 공간적인 분포 및 집중패턴을 파악하는 폭함수(width function, n(s))와 면적함수(area function, M(s))를 이용하여 관망을 간략화 하였다. 등가관의 수리기하조건 결정은 유역이 정상상태에 도달했을 경우에 대해서 이루어지게 되며 정상상태 모의를 통해 개별 관망단면들에 대해 얻어진 유량(Q), 면적(A), 수심(y) 자료간의 상관관계를 유추하여 Q(A), A(y) 함수를 유도하게 되면 종국적으로 관로홍수추적에 이용되는 지배방정식의 매개변수인 파속계수(c) 및 확산계수(D)를 계산할 수 있게 된다. 본 연구에서는 대상 유역으로 군자 배수구역을 선정하여 유역의 특성과 관망 자료를 수집하고 간략화 기법을 적용한 결과를 분석 하였다.다. 21세기 문화산업에서 우리가 판단하게 될 디자인의 가치는 계몽의 원리에 대한 '역사성'과 '현재성'의 변증법에 달려있는 것이며, 새로운 철학, 새로운 문명, 새로운 세계를 열어가는 것이다.r$ (地理志)에는 추현리와 이미 외리를 언급하면서 상주의 자기제작의 위상을 짐작하는 기록이 언급되면서 전국의 상품의 절반을 담당하고 있었음을 알 수 있었다. $\ulcorner$경상도지리지$\lrcorner$(慶尙道地理志)에는 상주가 8곳으로 1/3의 자기 생산을 담당하고 있었다. $\ulcorner$경상도지리지$\lrcorner$(慶尙道地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와 동년대에 동일한 목적으로 찬술되었음을 알 수 있다. $\ulcorner$경상도실록지리지$\lrcorner$(慶尙道實錄地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다. 이러한 현상은 첫째, 15세기

  • PDF

Filter Media Specifications for Low Impact Development: A Review of Current Guidelines and Applications (LID 시설 여재에 관한 기술지침 및 적용에 관한 고찰)

  • Guerra, Heidi B.;Kim, Lee-Hyung;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.321-333
    • /
    • 2019
  • A primary aspect of low impact development (LID) design that affects performance efficiency, maintenance frequency, and lifespan of the facility is the type of filter media as well as the arrangement or media profile. Several LID guidelines providing media specifications are currently available and numerous studies have been published presenting the effectiveness of these systems. While some results are similar and consistent, some of them still varies and only a few focuses on the effect of filter media type and arrangement on system performance. This creates a certain level of uncertainty when it comes to filter media selection and design. In this review, a synthesis of filter media specifications from several LID design guidelines are presented and relevant results from different laboratory and field studies are highlighted. The LID systems are first classified as infiltration or non-infiltration structures, and vegetated or non-vegetated structures. Typical profiles of the media according to classification are shown including the different layers, materials, and depth. In addition, results from previous studies regarding the effect of filter media characteristics on hydraulic and hydrologic functions as well as pollutant removal are compared. Other considerations such as organic media leaching, clogging, media washing, and handling during construction were also briefly discussed. This review aims to provide a general guideline that can contribute to proper media selection and design for structural LIDs. In addition, it also identifies opportunities for future research.

Analysis of Regional Antecedent Wetness Conditions Using Remotely Sensed Soil Moisture and Point Scale Rainfall Data (위성토양수분과 지점강우량을 이용한 지역 선행습윤조건 분석)

  • Sunwoo, Wooyeon;Kim, Daeun;Hwang, Seokhwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.587-596
    • /
    • 2014
  • Soil moisture is one of the most important interests in hydrological response and the interaction between the land surface and atmosphere. Estimation of Antecedent Wetness Conditions (AWC) which is soil moisture condition prior to a rainfall in the basin should be considered for rainfall-runoff prediction. In this study, Soil Wetness Index (SWI), Antecedent Precipitation Index ($API_5$), remotely sensed Soil Moisture ($SM_{rs}$), and 5 days ground Soil Moisture ($SM_{g5}$) were selected to estimate the AWC at four study area in the Korean Peninsula. The remotely sensed soil moisture data were taken from the AMSR-E soil moisture archive. The maximum potential retention ($S_{obs}$) was obtained from direct runoff and rainfall using Soil Conservation Service-Curve Number (SCS-CN) method by rainfall data of 2011 for each study area. Results showed the great correlations between the maximum potential retention and SWI with a mean correlation coefficient which is equal to -0.73. The results of time length representing the time scale of soil moisture showed a gap from region to region. It was due to the differences of soil types and the characteristics of study area. Since the remotely sensed soil moisture has been proved as reasonable hydrological variables to predict a wetness in the basin, it should be continuously monitored.

Outlook for Temporal Variation of Trend Embedded in Extreme Rainfall Time Series (극치강우자료의 경향성에 대한 시간적 변동 전망)

  • Seo, Lynn;Choi, Min-Ha;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.13-23
    • /
    • 2010
  • According to recent researches on climate change, the global warming is obvious to increase rainfall intensity. Damage caused by extreme hydrologic events due to global change is steadily getting bigger and bigger. Recently, frequently occurring heavy rainfalls surely affect the trend of rainfall observations. Probability precipitation estimation method used in designing and planning hydrological resources assumes that rainfall data is stationary. The stationary probability precipitation estimation method could be very weak to abnormal rainfalls occurred by climate change, because stationary probability precipitation estimation method cannot reflect increasing trend of rainfall intensity. This study analyzed temporal variation of trend in rainfall time series at 51 stations which are not significant for statistical trend tests. After modeling rainfall time series with maintaining observed statistical characteristics, this study also estimated whether rainfall data is significant for the statistical trend test in near future. It was found that 13 stations among sample stations will have trend within 10 years. The results indicate that non-stationary probability precipitation estimation method must be applied to sufficiently consider increase trend of rainfall.

Effects of river space restoration on biodiversity in the Mankyung river (만경강 하천공간 복원이 생물다양성에 미치는 영향)

  • Jeon, Ho-Seong;Kim, Kyuho;Hong, Il;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.865-873
    • /
    • 2019
  • The purpose of this study is to develop and apply a river space restoration framework considering various functions of river basin system. In particular, we will present sustainable river basin management directions by quantifying the effect of improving the aquatic ecosystem through the restoration of river space. For this purpose, the present problems are derived from functional aspects of the river basin, and the river area restoration framework linked with the individual outcome indicators is constructed to evaluate the restoration effect by each function. The ecological impact of restoration of river area was quantitatively analyzed by introducing ecotope concept. As a result of the comparison of restoration effects by creating three kinds of river area restoration scenarios, the construction of suitable habitat such as backswamp in the expanded area has shown favorable results in expanding biodiversity. The diversity evaluation of ecotope in conjunction with the hydraulic and hydrological characteristics of the year will not only provide the expected effects of restoration of river space but will also serve as a criterion about post-project monitoring for outcome evaluation.

Uncertainty Analysis of Stage-Discharge Curve Using Bayesian and Bootstrap Methods (Bayesian과 Bootstrap 방법을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Lim, Jonghun;Kwon, Hyungsoo;Joo, Hongjun;Wang, Won-joon;Lee, Jongso;You, Younghoon;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • The objective of this study is to reduce the uncertainty of the river discharge estimation method using the stage-discharge relation curve. It is necessary to consider the quantitative and accurate estimation method because the river discharge data is essential data for hydrological interpretation and water resource management. For this purpose, the parameters estimated by Bayesian and Bootstrap methods are compared with the ones obtained by stage-discharge relation curve. In addition, the Bayesian and Bootstrap methods are applied to assess uncertainty and then those are compared with the confidence intervals of the results from standard error method which has t-distribution. From the results of this study, The estimated value of the regression analysis developed through this study is less than 1 ~ 5%. Also It is confirmed that there are some areas where the applicability is better than the existing one according to the water level at each point. Therefore, if we use more suitable method according to the river characteristics, we could obtain more reliable discharge with less uncertainty.